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Abstract—To prevent users’ privacy from leakage, more and
more mobile devices employ biometric-based authentication ap-
proaches, such as fingerprint, face recognition, voiceprint authen-
tications, etc., to enhance the privacy protection. However, these
approaches are vulnerable to replay attacks. Although state-of-
art solutions utilize liveness verification to combat the attacks, ex-
isting approaches are sensitive to ambient environments, such as
ambient lights and surrounding audible noises. Towards this end,
we explore liveness verification of user authentication leveraging
users’ lip movements, which are robust to noisy environments.
In this paper, we propose a lip reading-based user authentication
system, LipPass, which extracts unique behavioral characteris-
tics of users’ speaking lips leveraging build-in audio devices on
smartphones for user authentication. We first investigate Doppler
profiles of acoustic signals caused by users’ speaking lips, and
find that there are unique lip movement patterns for different
individuals. To characterize the lip movements, we propose a deep
learning-based method to extract efficient features from Doppler
profiles, and employ Support Vector Machine and Support Vector
Domain Description to construct binary classifiers and spoofer
detectors for user identification and spoofer detection, respec-
tively. Afterwards, we develop a binary tree-based authentication
approach to accurately identify each individual leveraging these
binary classifiers and spoofer detectors with respect to registered
users. Through extensive experiments involving 48 volunteers in
four real environments, LipPass can achieve 90.21% accuracy
in user identification and 93.1% accuracy in spoofer detection.

I. INTRODUCTION

Mobile devices are increasingly pervasive and common in
our daily life. Due to the fast and convenient data connections
of mobile devices, an increasing number of people use mobile
devices as frequent storage medium for sensitive information
including personal (e.g., identity ID) and financial (e.g., CVS
code of credit cards) information, etc. Thus, more and more
users are concerned with the privacy-preserving problem in
mobile devices. According to a report from Symantec [1],
78% of users are concerned about losing information on their
personal devices and 41.2% of users have lost their mobile
devices with sensitive information leakage. Because of the
potential risks, it is essential to develop a powerful user
authentication to prevent users’ sensitive information from
leakage on mobile devices.

The most widely deployed user authentication approach is
the password. But passwords are usually hard to remember
and vulnerable to stealing attacks. To deal with the problem,
many biometric-based techniques are developed to perform
user authentication on mobile devices, such as Fingerprint,
Face recognition, Voiceprint authentications, etc., and relative
products are already developed, i.e., Apple Touch ID [2],
Alipay Face Recognition Login [3], Wechat Voiceprint Lock
[4], etc. However, such authentications are only based on
physiological characteristics, suffering from replay attacks
[5]. To combat the replay attacks, liveness verification [6]
becomes an attractive approach to improve the reliability
of user authentication. Luettin et al. [7] propose a visual
features-based method to distinguish a face of a live user
from a photo. Zhang et al. [5] propose a phoneme localization
approach to verify a passphrase whether spoken by a live user
or pre-recorded by attackers. However, these recent works
are sensitive to ambient environments. For example, face
recognition and voiceprint authentications are susceptible to
ambient lights and surrounding audible noises respectively,
which could lead to significant performance degradations.
Towards this end, we explore the liveness verification of user
authentication leveraging unique patterns extracted from users’
lip movements, which cannot be forgotten and are robust to
noisy environments.

When speaking, people’s lips involve in motions. Studies
show that such motions present unique lip movement patterns
for different individuals [8]. This triggers our research in
this work to extract behavioral patterns of lip movements for
user authentication on mobile devices, such as smartphones
and smartpads. We study whether it is possible to distinguish
different user’s lip movements leveraging acoustic signals, as
acoustic signals have been proved feasible in sensing moving
objects [9], [10] without deploying customized hardware on
mobile devices. In addition, the acoustic signals are robust to
ambient light variations and surrounding audible noises. Thus,
the lip reading-based user authentication can easily adapt to
various environments. Meanwhile, the lip reading-based user
authentication can achieve liveness verification naturally and
cope with various attacks. To realize the lip reading-based
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user authentication leveraging acoustic signals, we face several
challenges in practice. Firstly, the subtle lip movements need to
be captured leveraging acoustic signals. Secondly, the unique
behavioral patterns of users’ speaking lips should be extracted
for different individuals. Thirdly, the designed authentication
system needs to have the capability to accurately identify
each individual. Finally, the solution should be lightweight
and computational efficient for smartphones.

In this paper, we first investigate the behavioral patterns
of users’ speaking lips leveraging acoustic signals. To cap-
ture Doppler shift of acoustic signals caused by subtle lip
movements, we utilize signal gradient in frequency-domain
to extract the reflected signals caused by lip movements from
a mixed received signal. Through analyzing Doppler profiles
of acoustic signals with respect to users’ speaking lips, we
find that there are unique lip movement patterns for different
individuals. Inspired by the observations, we propose a lip
reading-based user authentication system, LipPass, which
reads users’ speaking lips leveraging acoustic signals and
extracts unique behavioral patterns of users’ speaking lips
for user authentication. First, we propose a deep learning-
based method, a three-layer autoencoder-based Deep Neural
Network (DNN), to extract efficient and reliable features from
Doppler profiles of users’ speaking lips under a single word.
Given the extracted features, LipPass employs Support Vector
Domain Description (SVDD) to construct a spoofer detector
for a single-user system, which can distinguish a registered
user from spoofers. Meanwhile, we also consider a multi-
users authentication system to differentiate a group of users,
in which users sequentially register to the system one by one.
To reduce the computational complexity and improve user
experience, LipPass constructs a binary classifier for each
newly registered user through Support Vector Machine (SVM)
to differentiate from prior registered users, and thereby develop
a binary tree-based authentication approach built upon the
binary classifiers with respect to each registered user for
continuous user authentication. Finally, to strengthen the relia-
bility of the authentication results, we design a weighted voting
scheme for user authentication by examining the speaking
lip patterns with multiple words. Our extensive experiments
demonstrate that LipPass is reliable and efficient for user
authentication in real environments.

We highlight our contributions as follows.
• We utilize signal gradient in frequency-domain to capture

Doppler shift of acoustic signals caused by subtle lip
movements, and find that there are unique lip movement
patterns for different individuals.

• We propose a lip reading-based user authentication sys-
tem, LipPass, which leverages acoustic signals to read
users’ speaking lips and extract unique behavioral pat-
terns of speaking lips for user authentication.

• We design a deep learning-based method to abstract
high-level behavioral characteristics of lip movements,
and employ SVM and SVDD to train binary classifiers
and spoofer detectors for user identification and spoofer
detection, respectively.
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Fig. 1. An example of a mixed received signal including a LOS signal and
a reflected signal from speaking lips.

• We develop a binary tree-based authentication approach
for multi-users system to accurately identify each individ-
ual leveraging the binary classifiers with respect to each
registered user.

• We conduct experiments in four real environments. The
results show that LipPass can achieve 90.21% accuracy
on average in user identification and 93.1% accuracy in
spoofer detection across different environments.

The rest of this paper is organized as follows. We first
show the preliminary in Section II. Then Section III presents
the system design of LipPass. The implementation details
are described in Section IV. The evaluation of the system is
presented in Section V. Finally, we review several related work
in Section VI and make a conclusion in Section VII.

II. PRELIMINARY

Audio devices on smartphones can be exploited to build an
acoustic signal field by continually emitting acoustic signals
with the speaker and receiving the signals by microphones on a
smartphone. A user’s lip movements can induce Doppler effect
of acoustic signals while the user speaks words. Different
users exhibit subtle differences on Doppler shift of acoustic
signals while speaking the same words. We are motivated to
utilize Doppler effect of acoustic signals to capture the unique
behavioral patterns of a user’s speaking lips and perform user
authentication on smartphones.

Doppler effect depicts the frequency change caused by the
movements of objects relative to the signal source. Specif-
ically, an object moving at speed v relative to the acoustic
signal source brings a frequency change:

∆f =
v

c
× f0, (1)

where c and f0 are the speed and frequency of the acoustic
signal respectively. Since a higher frequency results in a
more discernible Doppler shift confined by Eq. (1), and most
smartphone speaker systems can only produce acoustic signals
at up to 20kHz, we select f0 = 20kHz as our frequency of
pilot tone, which is also out of the humans’ auditory perceptual
range. We sample the raw data on smartphones at the rate
of 44.1kHz, which is the default sampling rate of acoustic
signals under 20kHz. Then, the original received signals are
transformed into frequency-domain signals by performing the
2048-points Fast Fourier Transform (FFT), which achieves a
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Fig. 2. Doppler profiles of acoustic signals caused by speaking the word
‘Hello’ under two different users.
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(b) User 2
Fig. 3. Doppler profiles of acoustic signals caused by speaking the word
‘World’ under two different users.

high frequency resolution with an appropriate computational
complexity.

Since the speaker and microphone are both integrated in
a smartphone, in the received signals, the attenuation of the
Line-Of-Sight (LOS) signal (i.e., the signal directly propagated
from the speaker to microphone) is far less than that of the
reflected signals by objects. Moreover, since the speed of
users’ speaking lips is much slower, the corresponding Doppler
shift will lie in the frequency band of the LOS signals. Fig.
1 shows an example of a mixed received signal including a
LOS signal and a reflected signal from speaking lips. We can
see that, in the received signal, the reflected signal caused by
speaking lips is buried within the LOS signal.

In order to capture Doppler shift of acoustic signals caused
by subtle lip movements, we employ signal gradient of re-
ceived signals in frequency-domain, which denotes the differ-
ence of the frequency-domain signals between two successive
time slots. Assume a user is stationary and the speaking lips
are the sole moving objects in the authentication scenario.
The received signal s(f)(t) consists of the LOS signal, the
reflected signal from speaking lips, the reflected signals from
surrounding static objects (e.g., furnitures), and the environ-
mental noises, i.e.,

s(f)(t) = se(f)(t) + srl(f) +
∑
i

srs(f)i(t) + n(t), (2)

where se(f)(t) is the LOS signal in time slot t, srl(f)(t) is the
reflected signal from speaking lips in time slot t, srs(f)i(t) is the
ith reflected signal from static objects in time slot t, and n(t)
is the white noise in the surrounding. Since the smartphone
steadily emits a predefined signal from the speaker, and the
distance between the speaker and microphone is fixed in
a smartphone, the LOS signal is invariant along the time.
Also, users are stationary in the authentication scenario, so
the reflected signals from static objects are invariant along
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Fig. 4. System architecture of LipPass.

the time. Thus, the signal gradient of received signals in
frequency-domain from time slot t− 1 to t, g(t), is:

g(t) = s(f)(t)− s(f)(t− 1)

= srl(f)(t)− s
rl
(f)(t− 1) + n(t)− n(t− 1). (3)

The gradient feature matrix G = [g(1), g(2), · · · , g(T )] can
represent Doppler profiles of users’ speaking lips within a
duration time T .

Fig. 2 and 3 show two Doppler profiles of acoustic signals
caused by speaking two words (i.e., ‘Hello’ and ‘World’)
from two different users respectively. Compare Fig. 2(a) with
2(b), we observe that Doppler profiles of speaking the word
‘Hello’ exhibit different variation trends between the two
users. Fig. 3(a) and 3(b) show the similar results. Additionally,
speaking the same word by the same user produces similar
Doppler profiles. These encouraging results demonstrate the
great potential that Doppler effect of acoustic signals caused
by users’ speaking lips can be used in user authentication.

III. SYSTEM DESIGN

In this section, we present the design of the lip reading-
based user authentication system, LipPass, which leverages
acoustic signals to read users’ speaking lips and capture
the unique behavioral patterns of lip movements for user
authentication.

A. Overview

Fig. 4 shows the system architecture of LipPass, which
includes two phases - the register phase and login phase.

In the register phase, a user speaks a passphrase including
several words several times. Meanwhile, a smartphone contin-
ually emits predefined ultrasonic acoustic signals and receives
the acoustic signals reflected from users’ speaking lips. First,
LipPass segments the received signals of the passphrase
into several episodes, each representing a single word. Then,
LipPass extracts efficient and reliable features from the signal
episodes leveraging a deep learning-based method. Finally,
based on these features, LipPass employs Support Vector
Machine and Support Vector Domain Description to construct
binary classifiers and spoofer detectors for user identification
and spoofer detection respectively.

In the login phase, LipPass first captures reflected signals
when user speaks the same passphrase as that in the register
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Fig. 5. Doppler profiles of lip movements when a user speaks four words
under four frequencies.

phase, then performs passphrase segmentation and feature
extraction. In user authentication, LipPass applies a binary
tree-based authentication approach to verify the user whether
a registered user or spoofer leveraging the trained binary
classifiers and spoofer detectors with respect to registered
users. Finally, LipPass further employs a weighted voting
scheme for user authentication by examining lip movement
patterns with multiple words.

B. Passphrase Segmentation

In both register and login phases, a user speaks a passphrase
including several words, and the smartphone receives the
acoustic signals reflected by the user’s speaking lips. LipPass
first segments the received signals of the given passphrase
into episodes, each representing a single word. According to
[11], there is usually a short interval (e.g., 300 ms) between
speaking two successive words. Fig. 5 shows Doppler profiles
of lip movements when a user speaks four words under
four frequencies, which are the largest four ones among all
Doppler profiles. It can be observed from the figure that the
intervals between arbitrary two words are significant. LipPass
regards each interval between two words as an inactive period.
Through empirical studies, Doppler profiles in an arbitrary
inactive period are all less than a threshold. Thus, LipPass
uses a sliding window to detect all inactive periods in a
passphrase and segments the passphrase. The threshold can
be set as the mean value of the noises in the surrounding.
LipPass would extract features from the signal episode of
each single word for classifier training and user authentication.

C. Deep Learning-based Feature Extraction

Traditional feature extracting methods abstract features by
observing the unique patterns manually. Features extracted by
these methods usually have redundant information and are
poor in robustness. Although some linear feature extraction
approaches (e.g., PCA or LDA) can achieve preferable features
by generating the linear decision boundaries [12], Doppler pro-
files of users’ speaking lips are usually non-linear separated.
Therefore, we develop a deep learning-based method, a three-
layer autoencoder-based Deep Neural Network (DNN) [13],
to extract efficient and reliable features from Doppler profiles
of users’ speaking lips.

In the proposed three-layer DNN model, each hidden layer
consists of an autoencoder network which abstracts the input
features as a set of compressed representations through an un-
supervised manner. Such compressed representations are able
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Fig. 6. Architecture of feature extraction through a three-layer autoencoder-
based Deep Neural Network.

to characterize unique behavioral patterns of users’ speaking
lips. The autoencoder can map the input X into a set of
compressed representation C as C = σ(wX + b), where σ()
is a logistic function defined as σ(x) = 1

1+e−x , w and b are
the weight and bias of the autoencoder network respectively.
The autoencoder is trained with the objective as follows:

minDIF (X,X ′) = min
1

N

N∑
i=1

(X(i)−X ′(i))2 (4)

+λΩweights + βΩsparsity,

where N is the number of training samples, X(i) and X ′(i)

are the ith element in the original input X and reconstructed
input X ′, Ωweights and Ωsparsity are the L2 regulariser for
the parameters and sparsity, and λ as well as β are the coef-
ficients of the two L2 regularisers. The objective minimizes
the differences between the original input X and a relative
reconstructed input X ′, where X ′ = σ(wTC + b′). Such an
objective ensures the compressed representation C can abstract
most of the original input X’s information.

Fig. 6 shows the architecture of feature extraction through
a three-layer autoencoder-based DNN model. Given Doppler
profiles, G = [g(1), g(2), · · · , g(T )], of a user’s speaking lips
within a duration time T , where g(t) is the signal gradient
of received signals in time slot t (t ∈ [1, T ]), each layer of
DNN model contains an autoencoder hi(i = 1, 2, 3), which
encodes the input into a set of compressed representations
as output. To ensure the extracted features robust enough for
classification, LipPass first applies the denoising autoencoder
[13] to denoise Doppler profiles G of users’ speaking lips
as the input of DNN model. The input of the first layer is
the denoised Doppler profiles G′ of users’ speaking under a
single word, the coarse-grained word-level features C1 can be
extracted as output by the autoencoder h1(G′) in the first layer.
Then, the output C1 of the first level is fed to the second layer.
The autoencoder h2(C1) in the second layer further extracts
the fine-grained word-level features C2 (e.g., phoneme-level
features). Finally, the autoencoder h3(C2) in the last layer
takes the output C2 of the second layer as input, and extracts
the user-level features, which represent the unique patterns of
a user and can be used for user authentication.

Fig. 7 shows two reconstructed profiles of a user speaking
the word ‘World’ based on extracted features of lip move-
ments. Compare with the original Doppler profile as shown in
Fig. 7(a), we can observe that both reconstructed profiles in
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Fig. 7. Reconstructed profiles based on extracted features of lip movements.

Fig. 7(b) and 7(c) can recover basic features from the original
Doppler profile, and the reconstructed result with denoising
shows more significant features than that without denoising.

D. Classifiers and Detectors Training for User Authentication

Given extracted features from Doppler profiles of users’
speaking lips through DNN model, we employ Support Vector
Machine (SVM) [14] to train classifiers and detectors for user
identification and spoofer detection.

For a single-user system, when a user registers to LipPass,
the user is required to speak a predefined passphrase several
times, so LipPass can extract the user’s unique features from
Doppler profiles of the user’s speaking lips as training data.
Since we only have the user’s training data while lack of
spoofers’ training data, we apply a special version of SVM,
i.e., Support Vector Domain Description (SVDD) [15], to train
a spoofer detector only using one-class data, i.e., the user’s
training data, which can distinguish the user from spoofers.

Moreover, it is possible for multiple users to access their
private information on a system. Thus, it is necessary to
verify a user’s identity in a multi-users system. In the register
phase, users sequentially register to the authentication system
one by one. Since multi-classes classifier construction induces
significant computational complexity, it is inappropriate for an
authentication system to reconstruct a multi-classes classifier
whenever a newly user registers to the system. Thus, in order
to reduce the computational complexity and improve user
experience in the register phase, we employ SVM to train
a binary classifier for each user. Assume (n − 1) users (i.e.,
U1, · · · , Un−1) have registered in the authentication system,
and the nth user, Un, is registering to the authentication
system. LipPass first applies the one-versus-rest method to
divide the n users’ training data into two-classes data, i.e., the
nth user’s data and prior (n−1) registered users’ data, and then
employs SVM to train a binary classifier for the nth user based
on the two-classes data, which can distinguish the nth user
from prior (n − 1) registered users. In a multi-users system,
LipPass would train a binary classifier for each registered
user to verify the user’s identity. Furthermore, LipPass trains
a spoofer detector based on the nth user’s data through SVDD
to distinguish spoofers from the nth user. All binary classifiers
and spoofer detectors will be used to authenticate users.

E. User Identification and Spoofer Detection

In the login phase, LipPass usually requires users to speak
a passphrase including several words. LipPass first identifies
each individual and detects spoofers under each word. Then,
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Fig. 8. Architecture of the binary tree-based authentication under single word.

based on authentication results under single words, LipPass
achieves the final authentication result under multiple words.

1) Authentication under Single Word: In the register phase,
for a user Ui in a n users system, LipPass trains a binary
classifier based on Ui’s features and prior (i − 1) registered
users’ features to verify whether the user is the ith user or
one of prior (i− 1) registered users. Since the ith classifier is
trained without any data about the subsequent registered users
(i.e., Ui+1, Ui+2, ..., Un) and spoofers, the user could be Ui,
one of the subsequent registered users (i.e., Ui+1, Ui+2, ..., Un)
or a spoofer if the ith classifier verifies a login user as Ui.
Thus, in the login phase, we propose a binary tree-based
authentication approach to verify users’ identities and detect
spoofers. Fig. 8 shows the architecture of the binary tree-based
authentication under single word.

Assume there are n users registered in a system. When
a user logins to the system, LipPass first collects Doppler
profiles of acoustic signals caused by the user’s speaking lips,
and then segments received acoustic signals into episodes, as
well as extracts features of the user’s speaking lips from the
episodes through DNN model. Based on the nth classifier,
LipPass verifies whether the user is the nth user or one
of prior (n − 1) registered users. If the classifier identifies
the user as the nth user, LipPass would feed the user’s
extracted features to the spoofer detector based on the nth

user’s features, which will verify whether the user is the nth

user or a spoofer. On the contrary, if the nth classifier identifies
the user as one of prior (n− 1) registered users, the extracted
features are further fed to the (n−1)th classifier. By analogy,
if the ith classifier identifies the user as the ith user, LipPass
can verify that the user is not an arbitrary user of the prior
(i−1) users. Additionally, LipPass has verified that the user
is not an arbitrary one of the subsequent registered users (i.e.,
Ui+1, Ui+2, · · · , Un) through the (i + 1)th to nth classifiers,
so LipPass can regard the user as the ith user. For the
1st user, LipPass utilizes the spoofer detector based on the
1st user’s features to distinguish the 1st user from spoofers.
Finally, LipPass is able to accurately identify a login user as
a registered user or spoofer.

The time complexity of the binary tree-based authentication
approach is O(N), where N is the number of registered
users. Thus, our authentication approach is lightweight and
computational efficient for smartphones.

2) Authentication under Multiple Words: To strengthen
the robustness of the authentication result, LipPass verifies
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Fig. 9. Relationship between authentication accuracy and the number of
phonemes in a single word.

Fig. 10. An example of the reflected signals from speaking lips and static
objects.

users’ identities and detects spoofers under several words. We
propose a weighted voting scheme to achieve the final user
authentication result under multiple words.

For different words, the number of phonemes are different,
which brings different amount of behavioral patterns from
speaking lips. Thus, the authentication accuracies under differ-
ent number of a word’s phonemes may exhibit considerable
differences. To exploit the relationship between the authen-
tication accuracy under single word and the number of a
word’s phonemes, we conduct an extensive experiment under
20 volunteers, which includes 10 males and 10 females. Each
volunteer in the experiment is asked to speak several words,
whose the number of phonemes varies from 1 to 10. For
each number of phonemes, we select 5 most frequent words
from Word Frequency Data [16]. For each word, we ask each
volunteer to speak it 3 times for the register phase and perform
12 legitimate authentications in the login phase. Fig. 9 shows
that the relationship between authentication accuracy and the
number of phonemes. We can observe that authentication accu-
racies under different number of phonemes exhibit significant
differences, while the authentication accuracies under the same
number of a word’s phonemes are almost the same. Therefore,
we can utilize the authentication accuracies under different
number of a word’s phonemes as weights to measure the
reliability of authentication results.

Assume the given passphrase includes m words. Through
the authentication under single word, LipPass can verify a
user’s identity and obtain m relative authentication results (i.e.,
L1, · · · , Lm). Then, based on the m authentication results
and relative m weights, i.e., {w1, w2, ..., wm}, we define the
confidence of a user Ui as follows:

confi =
∑
j

wj , j ∈ {k|Lk = Ui}. (5)

Based on the confidences of the registered users and the
spoofer, LipPass can identify a user as the registered user
with maximum confidence.

IV. IMPLEMENTATION

LipPass utilizes acoustic signals to read users’ speaking
lips for user authentication. The acoustic signals are vulnerable
to multi-path interferences from users’ body movements and
static objects in the surrounding. Thus, it is necessary to
eliminate the multi-path interferences.

A. Eliminating Multi-path Interferences from Body Movements

In practice, users’ speaking lips are not the sole moving
objects in authentication scenarios, and there are usually other
body movements, such as walking, stretching out hand, and
some environmental audible voices, which affect the received
signals. However, Doppler shift caused by these motions are
quite different from that caused by users’ speaking lips. The
normal body movements lead to a Doppler shift ranging in
[50, 200]Hz [17], and Doppler shift of audible voices ranges
in [500, 2000]Hz. However, Doppler shift caused by users’
speaking lips is [−40, 40]Hz. Thus, we apply a Butterworth
Band-Pass Filter [18] for acoustic signals to obtain the target
frequency band, i.e., [f0 − 40, f0 + 40]Hz, for speaking lips
detection, and eliminate other out-band interferences.

B. Removing Multi-path Interferences from Static Objects

When users authenticate through LipPass, except for re-
flected signals from users’ lips, there are other reflected signals
from static objects, such as desks and chairs. Since users are
usually not stationary in fact, the reflected signals from static
objects are variant with time. Thus, the reflected signals from
static objects would also interfere with the reflected signals
from users’ speaking lips. Thus, it is necessary to remove the
reflected signals from static objects in received signals.

Usually, in the authentication scenario, users’ lips are close
to the smartphone (e.g., less than 10 cm), while the distances
between static objects and the smartphone are far longer
than distances between lips and the smartphone. Thus, the
amplitude of reflected signals from static objects are far lower
than that of reflected signals from lips. Fig. 10 shows an
example of the reflected signals from speaking lips and static
objects. We can observe that the amplitudes of two reflected
signals from lips are far larger than that of other reflected
signals from static objects. Thus, we adopt a threshold-based
approach to remove the reflected signals from static objects,
and the threshold can be selected through empirical studies.

V. EVALUATION

In this section, we evaluate the performance of LipPass
under the collected data from 48 volunteers in four different
real environments.

A. Experiment Setup and Methodology

We evaluate LipPass with four types of smartphones, i.e.,
a Nexus 6P, a Galaxy S6, a Galaxy Note 5, and a Huawei
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Fig. 11. Confusion matrix of LipPass, each
entry of which is the average value in four
different environments.

Fig. 12. Authentication accuracy of LipPass,
voiceprint and face authentications in four differ-
ent environments.

Fig. 13. False accept rate and false reject rate of
LipPass in four different environments.

Honor 8. Our experiments are conducted under 4 different
environments, i.e., a laboratory (bright and quiet), a train
station (bright but noisy), a dark laboratory (quiet but dark),
and a pub (dark and noisy). In each environment, we randomly
select 12 volunteers, including 6 males and 6 females whose
ages range from 18 to 52, to conduct our experiments. Among
the 12 volunteers, 10 of them register in the system with
LipPass while the rest two volunteers as spoofers. Each
volunteer randomly selects a smartphone for the experiment.
We predefine 10 passphrases, each of which contains 1-10
words. In each passphrase, we select words with the number
of phonemes larger than 4. This is because when the number of
phonemes increases to 4, the expected authentication accuracy
under single word can be achieved, as Fig. 9 shows. Each
volunteer speaks the 10 predefined passphrases 3 times to
register in the authentication system, and performs 12 times
legitimate authentications for each passphrase.

To evaluate the performance of LipPass, we define four
metrics as follows,
• Confusion Matrix: Each row and each column of the

matrix represent the ground truth and the authentication result
of LipPass respectively. The ith-row and jth-column entry
of the matrix shows the percentage of samples that are
authenticated as the jth user while actually are the ith user
for all samples that actually are the ith user.
• Authentication Accuracy: The probability that a user who

is U is exactly authenticated as U .
• False Accept Rate: The probability that a user not a

registered user is authenticated as a registered user.
• False Reject Rate: The probability that a user not a spoofer

is authenticated as a spoofer.

B. Overall Performance

We first evaluate the overall performance of LipPass
through confusion matrix. Fig. 11 shows the confusion matrix
of LipPass, each entry of which is the average value in four
different environments. We can see that LipPass can achieve
over 83.7% accuracy in identifying the registered users. The
average accuracy of LipPass in user identification is 90.21%
with a standard derivation of 3.52%, and the average accuracy
in spoofer detection is 93.1%.

We compare the performance of LipPass with that of
Wechat voiceprint lock and Alipay face recognition login. Fig.
12 shows the authentication accuracies of LipPass, Wechat

voiceprint lock and Alipay face recognition login in four
different environments respectively. It can be seen from the
figure that the authentication accuracy of LipPass is 95.3%,
which is similar to that of 96.1% and 97.2% under voiceprint
lock and face recognition login in the laboratory. Moreover, the
accuracies of LipPass are 95.3%, 92.4%, 94.9% and 91.7%
in the four environments respectively, which means the dif-
ferences of LipPass’ accuracies are insignificant in different
environments. On the contrary, Wechat voiceprint lock and
Alipay face recognition login suffer significant performance
degradation in some environments. For voiceprint lock, the
accuracies decrease to 34.3% and 21.3% in noisy environments
respectively, i.e., the train station and pub. For face recognition
login, the accuracies decrease to 32.9% and 20.4% in dark
environments respectively, i.e., the dark laboratory and pub.

We further evaluate the reliability and user experience of
LipPass through the false accept and false reject rates. Fig. 13
shows the false accept rates and false reject rates of LipPass
in four different environments. We can see that the false accept
rates are all less than 2%, and the overall false accept rate is
1.2%, which demonstrates that LipPass can defend spoofing
attacks and is reliable enough. Additionally, it can be seen
from Fig. 13 that the false reject rates are all less than 3%,
and the overall false reject rate is 1.6%, which demonstrates
that LipPass can accurately identify a registered user.

We also evaluate the user experience through the speaking
times for successful login. Fig. 14 shows CDF of the speaking
times for successful login in four different environments. We
can see that 95% of users can successfully login to the system
through speaking a passphrase less than 4 times, which is
acceptable for users in real environments.

C. Performance of LipPass in Response Time

We enable LipPass to trace two time points, i.e., the end
time ttalk of a user’s speaking lips and the time tlogin when
the user logins the system, and obtain LipPass’ response time
T = tlogin − ttalk. Usually, the response time of applications
is related to the capabilities of smartphones, so we evaluate the
response time of LipPass under four different smartphones.
Fig. 15 shows the response time of LipPass under four
smartphones. We can see that for 90% of volunteers, the
response times are less than 0.73s, 0.74s, 0.79s, and 0.75s
under Nexus 6P, Galaxy S6, Galaxy Note 5, and Huawei Honor
8, respectively. The average response times are 0.62s, 0.62s,
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Fig. 14. CDF of the speaking times for successful
login in four different environments.

Fig. 15. CDF of the response time under four
smartphones.

Fig. 16. Relationship between authentication
accuracy and distances from microphone to users’
lips in four different environments.
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Fig. 17. Authentication accuracy of LipPass under different passphrase
lengths in four different environments.

Fig. 18. Authentication accuracy of LipPass under different training set
sizes in four different environments.

0.67s, and 0.64s under the four smartphones respectively.
Users are not clearly aware of such a response time, which
demonstrates LipPass would authenticate users efficiently.

D. Impact of Distance between Microphone and Users’ Lips

Since we utilize acoustic signals to capture users’ speak-
ing lips, the signal attenuation cannot be avoided. A longer
distance between the microphone and users’ lips may bring
a significant signal attenuation of the reflected signals, and
further leads to a performance degradation of the authentica-
tion system. We enable smartphones to measure the distance
between users’ lips and the microphone through Time of
Arrival (ToA). Fig. 16 shows the relationship between the
authentication accuracy of LipPass and distance from the
microphone to users’ lips in four different environments. We
can observe from the figure that the authentication accuracy of
LipPass decreases as the distance increases. This is because
the signal attenuation of reflected signals from speaking lips
becomes larger as the distance between the microphone and
users’ lips increases. However, the authentication accuracies in
all four environments can achieve 95% authentication accuracy
as the distance less than 12cm.

E. Impact of Passphrase Length

Usually, a longer passphrase brings more behavioral pat-
terns of users’ speaking lips, which can provide stronger
security guarantee. However, speaking a too long passphrase
will induce a poor user experience. Specifically, we sort all
passphrases based on their lengths, and obtain the relative
authentication results. Fig. 17 shows the authentication accu-
racy of LipPass under different passphrase lengths in four
different environments. We can see from the figure that the

authentication accuracy first increases, and then goes stable
as the passphrase length increases. Specifically, when the
passphrase length increases to 3, the overall authentication
accuracy of LipPass is above 90%. And the overall authen-
tication accuracy of LipPass is stable at around 95% when
the passphrase length larger than 4. Thus, it is appropriate to
select 4 as the passphrase length for LipPass.

F. Impact of Training Set Size

The size of training set is proportional to users’ speaking
times for registering. In the register phase, more times of
users’ speaking provides more data for classifiers training.
However, too much times of users speaking would lead to a
poor user experience in the register phase. We randomly select
3 volunteers in each environment to conduct the extensive
experiment. Each volunteer is required to speak a passphrase
with 1-10 times in the register phase, and perform 12 times
legitimate authentications in the login phase. Fig. 18 shows
the authentication accuracy of LipPass under different sizes
of training sets in four environments. We can see that as the
size of training set increases, the authentication accuracy of
LipPass first increases and then goes stable. Specifically, to
achieve 90% overall accuracy, the speaking times of users is
3 times. When users’ speaking times increases to 4 times, the
overall accuracy of LipPass is 92.69%, and more speaking
times would not bring significant increase in authentication
accuracy. Thus, we select speaking 3 times for user registering.

VI. RELATED WORK

Acoustic Signals-based Applications. Recently, acoustic
sensing attracts considerable attentions since audio devices are
widely deployed in mobile devices and the acoustic sensing is
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non-intrusive. Previous studies propose to use acoustic signals
for gesture recognition [17] [19], gesture tracking [9], [10],
and even silent talking recognition [20]. However, there is no
work on leveraging acoustic signals to identify a specific user
based on the unique behavioral patterns of the user.

Password-based Authentication. As the most typical and
widely used approach for user authentication, password-based
approach [21] requires users to remember some specific secure
texts as the sole tool for authentication. Since the password is
not associated with a specific user, any spoofer who steals the
password can pass the authentication.

Biometric-based Authentication. To overcome the vul-
nerability of password-based authentication, previous works
exploit biometric-based authentication approaches, such as
fingerprint, face recognition and voiceprint authentications, to
identify users. Fingerprint-based authentication, such as Apple
Touch ID [2], identifies different users through recognizing the
fingers’ unique patterns. Face recognition-based authentica-
tion, such as Alipay Face Recognition Login [3], utilizes image
pattern recognition techniques to capture the uniqueness of
users’ faces. Voiceprint-based authentication, such as Wechat
Voiceprint Lock [4], verifies a user through identifying the
user’s unique speaking voices. However, these existing solu-
tions are vulnerable to replay attacks. For example, attackers
can pre-record a video or voice to spoof the face recognition
and voiceprint authentication systems. Even the fingerprint-
based authentication can be spoofed by the fingerprint film.

Authentication with Liveness Verification. To combat the
replay attacks, some previous works propose to utilize liveness
verification to improve the reliability of user authentication.
Luettin et al. [7] propose a visual features-based method to
distinguish a face of a live user from that in a photo. Zhang
et al. [5] propose a phoneme localization approach to verify
whether a passphrase spoken by a live user or pre-recorded
by attackers. However, these works are all sensitive to the
ambient environments, such as ambient lights and audible
noises. Unlike existing approaches, our work leverages acous-
tic signals to read users’ speaking lips for user authentication
on smartphones, which is robust to different environments and
can cope with various attacks.

VII. CONCLUSION

In this paper, we propose a lip reading-based user authen-
tication system, LipPass, by extracting unique behavioral
characteristics of users’ speaking lips leveraging build-in audio
devices on smartphones. Our system takes step forward to
support user authentication in not only defending various
attacks but also adapting to different environments. We find
that Doppler profiles of acoustic signals are affected by lip
movements and exhibit unique pattern for different individual.
To characterize the lip movements, we design a deep learning-
based method to extract efficient and reliable features from
Doppler profiles of users’ speaking lips. Given the extracted
features, binary classifiers and spoofer detectors are trained for
user identification and spoofer detection through Support Vec-
tor Machine and Support Vector Domain Description, respec-

tively. Finally, we develop a binary tree-based authentication
approach to accurately identify each individual based on the
trained classifiers and detectors. Extensive experiments show
that LipPass is reliable and efficient for user authentication
in various environments.
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