
Cost-Efficient VM Configuration Algorithm
in the Cloud using Mix Scaling Strategy

Li Lu, Jiadi Yu, Yanmin Zhu, Guangtao Xue, Shiyou Qian, Minglu Li

Department of Computer Science and Engineering,

Shanghai Jiao Tong University

Presenter: Li Lu

Popularity of Cloud Computing

 Cloud Computing vs. Typical Infrastructure

• Thanks to pay-per-use pricing, more elastic in

management

• Cloud computing can satisfy the peak workload

without over-provision computing resources

• e.g., Brickfish migrates its services to cloud leading

to a decrease of cost from $700,000 to $200,000

vs.

Difficulties in Managing Cloud Resources

 VM instance type selection

• Different VM instance type configurations → different performance & cost

 Precise VM instance type selection

• need accurate prediction of future workload (difficult!)

• even experienced administrators cannot precisely select VM instance type

 Key point: the tradeoff between cost and performance during the runtime

Existing Solutions

 Cost-aware homogeneous VM configurations

• Same VM instance type

 Multi-mechanisms in VM configurations

• Local-resize, replication, migration

 However, during the runtime in cloud,

• Utilizing heterogeneous VM instance types is more cost-

efficient

• Migration of VM leads to high performance degradation

Outline

• Problem Definition

• Cost-efficient Mix Scaling Algorithm

• Evaluation

• Conclusion

VM Configuration Model

 objective: minimize the renting cost of cloud resources

 constraints: the service rate of the configuration should be

larger than the arrival rate of requests

• the number of VM instance types: K

• the cost of the ith VM instance type: 𝑐𝑖

• the maximum service rate of ith VM instance type: 𝜇𝑖

• the arrival rate of requests: λ

• the number of ith VM instance type in the configuration: 𝑥𝑖

1

1

min

. .

 , 1,2,...,

K

i i

i

K

i i

i

i

x c

s t x

x N i K

Differences between Two Constitute Configurations

 Due to the workload fluctuation, the two constitute VM configurations 𝑥𝑜𝑙𝑑 and

𝑥𝑛𝑒𝑤 are almost always different in all time slots.

• Note that 𝑥𝑜𝑙𝑑 and 𝑥𝑛𝑒𝑤 are K-dimension vectors

 3 situations may occur:

• 𝑥𝑛𝑒𝑤 ≥ 𝑥𝑜𝑙𝑑: more VMs of all types are needed to meet performance requirement

• 𝑥𝑛𝑒𝑤 ≤ 𝑥𝑜𝑙𝑑: less VMs of all types are needed to be cost-efficient

• 𝑥𝑛𝑒𝑤 ≠ 𝑥𝑜𝑙𝑑: need to add or delete several VMs of different instance types

 For the first 2 situations, renting more or deleting several VMs would be OK

 For the 3rd situation, migrations would occur, which should be control to improve

the performance

Cost-Migration Delay Tradeoff

 Tradeoff: Cost vs. Migration delay

• For Cost: the objective minimizes the cost

• For Migration delay: need to modeled

minσ𝑖=1
𝐾 𝑥𝑖𝑐𝑖

Migration Delay Modeling

 Migration Mechanism in Cloud

• Instead of directly migration, migration in

cloud should utilize the image server as a

bridge

 Migration Delay can be modelled as:

 where D is the image size, b is the bandwidth,

s is the start time of a new VM

Normal Migration

Migration in Cloud

𝛼 = 2
𝐷

𝑏
+ 𝑠

Cost-Migration Delay Tradeoff (COMDT) Problem

1

1

min

. .

 , 1,2,...,

K

i i

i

K

i i

i

i

x c

s t x

x N i K

1

0 1

1

1

0

1
min lim ()

. . () (),

1
 lim ()

 , ,

T K

i i
T

t i

K

i i

i

T

T
t

i

x t c
T

s t x t t t

t MT
T

x N i t

Original Problem

Cost-Migration Delay

Tradeoff Problem

Migration Delay

Constraint

Outline

• Problem Definition

• Cost-efficient Mix Scaling Algorithm

• Evaluation

• Conclusion

Difficulty in Solving the COMDT Problem

 The COMDT problem aims to

• minimize the long-term cost

• constrain the long-term migration delay

 Notice that there are two limits in the objective and the

migration delay constraint

• Hard to solve with typical optimization techniques

• Adopt Lyapunov optimization techniques

1

0 1

1

1

0

1
min lim ()

. . () (),

1
 lim ()

 , ,

T K

i i
T

t i

K

i i

i

T

T
t

i

x t c
T

s t x t t t

t MT
T

x N i t

Cost-Efficient Mix Scaling Algorithm

 Virtual Queue Construction Q(t)

 Lyapunov Drift Construction ΔL(t)

 One-slot Optimization Problem Construction

 Optimization Problem Solving

Virtual Queue

 Migration delay → Virtual queue

• 𝑄 0 = 0

• 𝑄 𝑡 + 1 = max{𝑄 𝑡 + 𝛼 𝑡 −𝑀𝑇, 0}

 The equivalence of migration delay constraint and the stability of

virtual queue

• lim
𝑇→∞

σ𝑡=0
𝑇−1𝛼(𝑡) ≤ 𝑀𝑇 ⇔ lim

𝑇→∞

𝑄(𝑡)

𝑇
= 0

 Thus, we first construct the virtual queue and utilize it to replace

the migration delay constraint

Lyapunov Drift

 To represent the stability of the virtual queue, we define two

notations based on Lyapunov optimization framework

• Lyapunov function: 𝐿 𝑡 =
1

2
𝑄(𝑡)2

• Lyapunov drift: Δ𝐿 𝑡 = 𝐸{𝐿 𝑡 + 1 − 𝐿(𝑡)|𝑄(𝑡)}

 There always exists an upper bound of the Lyapunov drift:

• Δ𝐿 𝑡 ≤ 𝑀 + 𝑄 𝑡 𝐸{2
𝐷 𝑡

𝑏
+ 𝐵|𝑄(𝑡)}

• where 𝑀 =
1

2
(2

𝐷𝑚𝑎𝑥

𝑏
+ 𝑠 −𝑀𝑇)2, 𝐵 = 𝑠 −𝑀𝑇

One-slot Optimization Problem

 Utilizing the upper bound, we formulate the objective of the

one-slot optimization problem

• 𝑉𝐶 𝑡 + ∆𝐿 𝑡 ≤ 𝑀 + 𝑉𝐶 𝑡 + 𝑄 𝑡 𝐸{2
𝐷 𝑡

𝑏
+ 𝐵|𝑄(𝑡)}

• where C(t) is the objective of COMDT problem

 To minimize this objective, the one-slot optimization problem is

 Finally, we adopt typical optimization techniques to solve it

1

()
min () ()(2)

. . () (),

 , ,

K

i i

i

i

D t
VC t Q t B

b

s t x t t t

x N i t

Outline

• Problem Definition

• Cost-efficient Mix Scaling Algorithm

• Evaluation

• Conclusion

Simulation Setup

 Workload λ:

• Generated by TPC-W

• 2 types of workload: low-fluctuation & high fluctuation

 VM types: 5 types as follows

• capacity μ: preliminary runtime test on our OpenStack platform

• price c: the same as AWS

Comparison methods

 4 algorithms:

• scale out: only use one type VM, and scale the number of the VM

• greedy scale up: first scale the VM type, then the number

• mix scale: our algorithm. 2 variations

• small V mix scale: focus more on migration delay

• large V mix scale: focus more on cost

Average Cost

 Our algorithm with small V

achieves 30.8% and 26.3%

higher cost-efficiency than

that of scale out and greedy

scale up algorithms

 Our algorithm with large V

achieves 31.1% and 26.5%

higher cost-efficiency than

that of scale out and greedy

scale up algorithms
Large V Mix Scale Small V Mix Scale Scale out Greedy Scale up

Algorithms

Response Time

 Under the same workload, small V mix

scale algorithm can reduce 38.19%

migration delay to further reduce the

response time compared with large V

mix scale algorithm.

Small V

Large V

Outline

• Problem Definition

• Cost-efficient Mix Scaling Algorithm

• Evaluation

• Conclusion

Conclusion

 Formulate the cost-migration delay tradeoff problem

• both cost of cloud resources and migration delay are considered

 Propose the cost-efficient mix scaling algorithm

• solve the COMDT problem utilizing the Lyapunov optimization

techniques

 Demonstrate the efficiency and feasibility of the algorithm

• save 31.1% and 26.5% cost while controlling migration delay

compared with scale out and scale up algorithms

Thank you!

Q & A

