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WiFi-based Sensing

Upcoming WiFi standard

Relative enterprises

Active research efforts
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Broadcasting Manner vs. Leakage Threat

• Omni-directional broadcasting 

manner of WiFi signals
- Able to transreceive signals in any 

position 

- Non-intrusive communication and 

sensing

Any security problem underlying the 

broadcasting manner?



Broadcasting Manner vs. Leakage Threat

Victim typing sensitive documents

Multiple AP sensing

Adversary compromising any AP

• Information leakage with broadcasting 

signals during sensing
- Not only the traditional token and files in the 

cyber world

- But also the physical sensed activity 

semantics!

Privacy concerns appear while we 

enjoy the convenience brought by 

WiFi sensing!



Goal & Challenges

➢ Challenges:

• Only compromise a single device for eavesdropping

• Have no prior knowledge of the compromised device’s location

• Retrieve activity semantics under unknown activity recognition models

Goal: 

• Investigate the feasibility of eavesdropping on the omni-directional 

broadcasting signal to retrieve the activity semantics 

• Reveal the threat of activity surveillance by pervasive WiFi infrastructures
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System and Threat Models

➢ WiFi Activity Recognition ➢ Activity Surveillance Attack

• Data collection

• Signal processing

• Feature extraction

• Classification model training

• Activity recognition

WiFi Router Smart appliances

Activities

• Victim’s Rx is compromised

• Adversary has no prior knowledge of model

details



Feasibility Study

➢ Ideal case

Signal:

• According to inverse square law:Hence, the CSI is: 𝑯 𝒇, 𝒕 =
𝒌

𝑫(𝒕)𝟐
𝒆−𝒋𝟐𝝅

𝑫(𝒕)

𝝀



Feasibility Study

➢ Experimental Validation

• Observation:

Though Rx and Sp in different positions, their received signals exhibit

similar trend
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Overview

➢ Three Processings

• Signal estimation

• Pattern conversion

• Activity semantics extraction

Basic idea: Recovering the WiFi signals

received by legitimate receiver from that by a

compromised one in any position



Signal Estimation

➢ Detecting Activity with First-Order Differential

• Both user behavior and static environments reflect in the signal

• Interfere with the conversion

• Threshold-based detection

• A sudden variance in CSI amplitudes at the start and end of an activity

• First-order differential of CSI amplitudes representing the variance

• Employ a sliding window to detect whether all signal points are within a threshold



Signal Estimation

➢ Estimating Locations with Multipath Separation

• Premise of signal conversion

• Estimated relative locations between Rx and Sp

• AoA and ToA estimation

• MUlti SIgnal Classification (MUSIC) and its derivation[1]

[1] H. Xue, J. Yu, Y. Zhu, L. Lu, S. Qian, and M. Li, “Wizoom: Accurate multipath profiling using commodity wifi devices with limited bandwidth,” in Proceedings of IEEE SECON, 2019.



Pattern Conversion

➢ Modeling Human Activity with CSI

• Linear behavior modeling

• Ideal case:

• Practical case:

• Eliminating unseen value:

• Non-linear behavior modeling



Pattern Conversion

➢ Converting Signal Patterns with Activity Models

• Main task:

• Recover 𝑑𝐻𝑅𝑥(𝑓, 𝑡) based on 𝐻𝑆𝑝(𝑓, 𝑡)

• How to?

• Perform polynomial expansion on 𝑑𝐻𝑆𝑝(𝑓, 𝑡) and obtain

• Derive the constant and first-order coefficient

• Using the measured 𝑑𝐻𝑆𝑝(𝑓, 𝑡), derive the behavior measurement v by solving the above

equation

• Replace v into the following equation, to derive the WiFi CSI received from legitimate Rx

𝑑𝐻𝑅𝑥 𝑓, 𝑡 =
𝑘𝑅𝑥𝑣

𝐷𝑅𝑥
2 (1 +

𝑣𝑡
𝐷𝑅𝑥

2

− 2
𝑣𝑡
𝐷𝑅𝑥

cos 𝜃𝑅𝑥)



Pattern Conversion

➢ Resisting Noises with Generative Model

• Ever-existing noises in CSI of WiFi channels

• Time-Delay Neural Network (TDNN)

• 5-layer 1D Convolution blocks

• One leaky ReLU as the activation function

• Multiple substitute recognition models

• Provide recognition score as feedback for signal calibration



Activity Semantics Extraction

➢ Query-based semantics extraction

• Compromised device’s received signal → Legitimate one’s received signal

• Retrieve semantics of the converted signals

• How to know specific models?

• Sniff packets sent from legitimate device and retrieve destination IP address of cloud-

based models

• Reconstruct the packet containing the generated signal pattern as the payload and the 

destination IP address

• Query the targeted cloud-based model
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Experimental Setup

➢ Implementation

• Tx: an AP TP-Link WDR5620

• Rx: a desktop Dell E6430 with Intel 5300 NIC

• Sp: a laptop HP Pavilion 14 with Intel 5300 NIC

• CSI of WiFi signals are extracted by CSI Tool

➢ Setup

• 15 volunteers and 5 activities for human-computer interactions

• Age: 19~43, heights: 1.59~1.80m, weights: 48~74kg

• Push, pull, bend arm, zigzag, slide

• Three environments

• Office (3.2m*2.8m), apartment (4.1m*3m), lab (5.8m*4.2m)



Performance of Activity Modeling-based Conversion

➢ Activity Recognition Accuracy (ARA)

• Sp’s ARAs all above 80%

• Sp’s ARA are all smaller than Rx’s ARA

within 10%

• ARAs of attacking different models exhibit

minute difference

• ARAs under different environments also

show subtle variance



Performance of Generative Model-based Calibration

➢ Activity Recognition Accuracy (ARA)

• Average ARA of generative model-based

calibration is 7.9% larger than activity

modeling-based conversion

• Standard deviation of ARA:

3.0% (activity modeling-based conversion)

→ 1.3% (generative model-based calibration)



Impact of Distances and Angles

➢ Activity Recognition Accuracy (ARA)

• ARA decreases as the increase of distance

• ARA could be larger than 80% within the distance of 1.8m

• ARAs decrease below 55% on average under the angle of −60◦ and −30◦

• ARA could be above 75% for other angles
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Conclusion

➢ Contribution

• Demonstrate an eavesdropping attack on

WiFi-based activity recognition

• Design an activity modeling-based signal

conversion method

• Develop a generative model-based signal

calibration approach

➢ Evaluation

• Achieve 88.4% α-similarity with legitimate

signals

• Achieve over 90% ARA in activity recognition

Eavesdropping

Activity Recognition

Broadcasting Manner

Activity 

Surveillance



Thank you!

Contact:  Li Lu 
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