Dynamically Adjusting Scale of a Kubernetes
Cluster Under QoS Guarantee

Presenter: Li Lu

Qiang Wu, Jiadi Yu, Li Lu, Shiyou Qian, Guangtao Xue
Shanghai Jiao Tong University

x # x 4 » & Cluster Autoscaler for Kubernetes

SHANGHATI JIAO TONG UNIVERSITY [l

» Huge electricity consumption
- Data centers consume approximately 1.12% of all electricity worldwide
« A half of the operational expenses within a data center are consumed
by the electricity cost
» Billing mechanism
 Many cloud providers, such as Amazon, gradually support resource
provisioning and billing in second manner

> Low cluster resource utilization

« Cluster is generally designed to handle peak loads
- During ordinary times, the load of a server is less than 50% of peak
and the CPU utilization of a server rarely goes beyond 40%

CLOUD SERVICES

Our work

» Target to widely-deployed web applications
> Find out a threshold of resource utilization

* Guarantee QoS in a Kubernetes cluster
 Determine the time when to scale up the cluster
» Design a system to scale up or down the cluster

« Guarantee quality of service
* Improve the cluster resource utilization

Y#FELILYE Outline

e System design

FALLY Overview

» Our system adopts a Monitor-Analyze-Plan-Execute
(MAPE) model, include four modules:

*Monitor module

OQQS module Kubernetes
The proposed system Node
: Master
m Monit
*Scaling module 1 el -
o . Kubelet
Executing module QoS module e
| — Kubectl— 1 No;ie
Scaling Kube-apiserver Pod ... Pod
module —
v Kube-controller- Kubelet
Executing manager
module ‘

r#xz42% Monitor Module

SHANGHAI JIAO TONG UNIVERSITY B

Monitor module is used to monitor CPU utilization of a whole
Kubernetes cluster.

> Workflow:

Monitor center --> Heapster --> cAdvisor --> Heapster -->
InfluxDB --> monitor center

(2)

Pod
Monitor center l 3) Kubelet
Pod -

T

Y SEPE-- QoS Module
SHANGHAI]lAO TONG UNIVERSITY

> Initialized Parts

* Run once to obtain the relationship between QoS and CPU
utilization

> Goal:
« Obtain a proper threshold of CPU utilization

« Guarantee quality of service

» Metrics of QoS: response time

x # % 4 . *Relationship between QoS and CPU

SHANGHAI JTAO TONG UNIVERSITY

> Workflow:

*Step1: The control center sends a HTTP request to the application,
and then receives the response to calculate the response time.

*Step2: The control center gets CPU utilization from monitor
module.

*Step3: The control center changes CPU utilization of the server,
and then rerun step1;

» Thus, we get the relationship:

|/ QoS module \
| Node
|
: Pod
|
|

—
(3) Control [(2) _

Monitor module —— -
center

N\ / 76 78 80 82 84 86 88 90 92 94 96
————————————————— CPU utilization(%)

+ % Threshold of CPU utilization

> The upper bound of response time:

Tiimit = aXT pormal
T...ma 1S the response time whose relative CPU utilization
is 40‘70

a is determined by users to meet their requirements
» Thus, we get the threshold of CPU utilization Uy, csho/4:

U 1 90% Uiimit = 90%
threshold — Uy Jimit Utimie < 90%

Uit is the CPU utilization corresponding to T;,,;;

#xdr% Scaling Module

> Goal:

« Scale up or down according to the monitoring data from

monitor module, while meet the QoS requirements by QoS
module

» Cluster Scaling Algorithm:

- IfU> Uthresholds
* N.ga =2 * Naqq, if the cluster scaled up last time
* N.,qq =1, if the cluster don't scaled up last time
« IfU<40%,
Nremove = 2 * Nremoves If the cluster scaled down last time
Nremove = 1, if the cluster don't scaled down last time

2y x # x4 2% Executing Module

SHANGHAI JTAO TONG UNIVERSITY

> Goal:

Implement each operation for cluster scaling based on the
output of the scaling module
« Generate specific command for Kubectl to realize the scaling

operation
Master
Etcd
Kube-scheduler
i (1) i (2) (3)
Scaling Executing Kubectl
module module

Kube-apiserver

Kube-controller-
manager

Outline

e Evaluation

r#x4+% Experimental Setup

SHANGHAI JIAO TONG

» 5 physical machines:

4-cores Intel(R) Core(TM) i5-4460S 2.9 GHz CPU, 4 GB memory
and 1 TB disk

» CentOS Linux release 7.5

» Kubernetes v1.10 and Docker v18.06-ce
Heapster v1.5.2 and InfuxDB v1.3.3

» Testing application:

Ticket Monster, deployed in Deployment manner with the
HorizontalPodAutoscaler

> Workloads:

Apache JMETER , simulate the workload that users send HTTP
requests to the Ticker Monster

Load (Reqg/sec)

Z

F

Workloads

35T

w

Load a

Load (Req/sec)
N
o

30 40 50 60

Time after divisibility

100

o
15
4
o ; ; ; ; ; ; ;
0 10 20 30 40 50 80 90 100 0
Time after divisibility 0 10
<104
! T I T T T
i : <104
45 T
4 45
35 4
3 35
)
25 8 3
Loadc
2 @ 25
B
. 2
15 S
1 15
05 1
0 i i i i i i H 0.5
0 10 20 30 40 50 80 90 100
. . 0 -
Time after divisibility 0 10

30

40 50 60 70
Time after divisibility

100

Load b

Load d

ay xr # x4 ~% Improvement of CPU utilization

SHANGHAI JIAO TONG UNIVERSITY

» CDF of CPU utilization of the original Kubernetes cluster and the
Kubernetes cluster with our system:

0.9 |- k8s cluster with our system __________ _______ r _________ i
' original k8s cluster P A

CDF

0 10 20 30 40 50 60 70 80 90 100
CPU utilization (%)

2y x#x4 ¥ Improvement of CPU utilization

SHANGHATI JIAO TONG UNIVERSITY

» The average CPU utilization of the original Kubernetes cluster
and Kubernetes cluster with our system under four different
workloads:

80

-~
o
T

...

D
=
T

o
=
T

F-N
o

Average CPU utilization(%)
(9%
o

N
o

-
o

Loads a Loads b Loads ¢ Loads d
Workloads

Improved by 28.99%

YFEidrY Reaction time

SHANGHAI JTAO TONG UNIVERSITY

» CDF of the system reaction time under four different
workloads:

1

—VLoads a
—Loadsb

Loads c
—Loadsd| |

08

e t S o

CDF

T . -

02 [l

=t 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
System reaction time(s)

» The average reaction time of the system is about 15s.

x # x4 +% Parameter Selection

SHANGHAI JIAO TONG UNIVERSITY I

QoS coefficient a under different duration T,

70)

” original k8s
| k8:

original kBs — Loads a

70

60 Londa b | 60 | |— Loads b 1
@ Loads ¢ @ Loads ¢
g Loads d £ —— Loads d
= =]
g 50 E
= =
2 (723
2 40 [g
2 Q
7 8
<] 5 8
o 30 >
g &
o [}
<q>2 20 Z 20 1
10 10 .
o \ o L . .
15 1.75 2 2.25 25 2.75 3 15 1.75 2 2.25 25 2.75 3
(a3 [as
70 —
original k8s 70
——Loads a original k8s
60 | |~ Loadsb — Loads a
Loads ¢ 60 | |— Loadsb
—— Loads d Loads c
50 —— Loadsd

o
=}

Average response time(ms)
Y
Q
N
Qo
.

Average response time(ms)

10
10
o s
15 1.75 2 225 25 275 3 0 L
15 1.75 2 225 25 275

selecta =2 Tqu=40s

YELALE Outline

* (Conclusion

Conclusion

» We propose a system, which dynamically adjusts scale of
a Kubernetes cluster, to improve the resource utilization.

» The system can automatically derive a threshold of
system resource utilization according to the specific
application in a Kubernetes cluster, which promises QoS
in a Kubernetes cluster.

» The experimental results show that CPU utilization of a
Kubernetes cluster with our system is improved by
28.99% than that of a original Kubernetes cluster on
average.

Z

F

Thank you!
Q&A

