

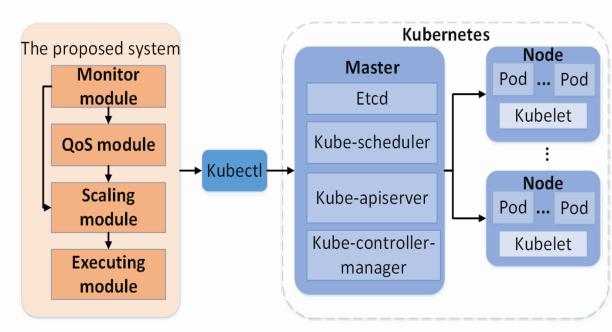
Dynamically Adjusting Scale of a Kubernetes Cluster Under QoS Guarantee

Presenter: Li Lu

Qiang Wu, Jiadi Yu, Li Lu, Shiyou Qian, Guangtao Xue Shanghai Jiao Tong University

- Huge electricity consumption
 - Data centers consume approximately **1.12%** of all electricity worldwide
 - A half of the operational expenses within a data center are consumed by the electricity cost
- Billing mechanism
 - Many cloud providers, such as Amazon, gradually support resource provisioning and billing in second manner
- Low cluster resource utilization
 - Cluster is generally designed to handle peak loads
 - During ordinary times, the load of a server is less than 50% of peak and the CPU utilization of a server rarely goes beyond 40%

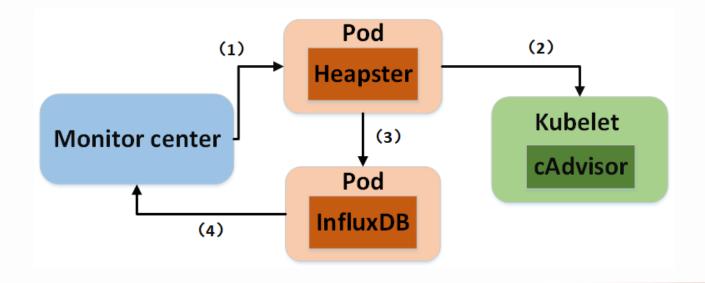
- Target to widely-deployed web applications
- Find out a threshold of resource utilization
 - Guarantee QoS in a Kubernetes cluster
 - Determine the time when to scale up the cluster
- Design a system to scale up or down the cluster
 - Guarantee quality of service
 - Improve the cluster resource utilization


- System design
- Evaluation
- Conclusion

Our system adopts a Monitor-Analyze-Plan-Execute (MAPE) model, include four modules:

Overview

- Monitor module
- •QoS module
- •Scaling module
- •Executing module


Monitor Module

Goal:

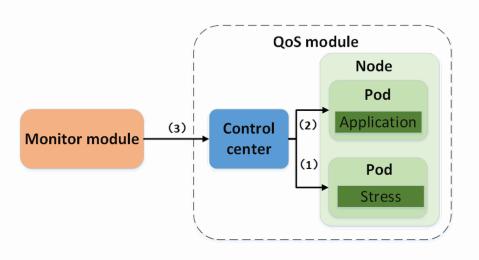
Monitor module is used to monitor CPU utilization of a whole Kubernetes cluster.

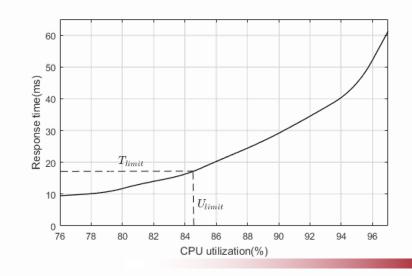
Workflow:

Monitor center --> Heapster --> cAdvisor --> Heapster --> InfluxDB --> monitor center

QoS Module

Initialized Parts


- Run once to obtain the relationship between QoS and CPU utilization
- ➢ Goal:
 - Obtain a proper threshold of CPU utilization
 - Guarantee quality of service
- > Metrics of QoS: response time



> Workflow:

- •Step1: The control center sends a HTTP request to the application, and then receives the response to calculate the response time.
- •Step2: The control center gets CPU utilization from monitor module.
- •Step3: The control center changes CPU utilization of the server, and then rerun step1;

Thus, we get the relationship:

The upper bound of response time:

 $T_{limit} = \alpha \times T_{normal}$

T_{normal} is the response time whose relative CPU utilization is 40%

- $\boldsymbol{\alpha}$ is determined by users to meet their requirements
- > Thus, we get the threshold of CPU utilization $U_{threshold}$:

$$U_{threshold} = \begin{cases} 90\% & U_{limit} \ge 90\% \\ U_{limit} & U_{limit} < 90\% \end{cases}$$

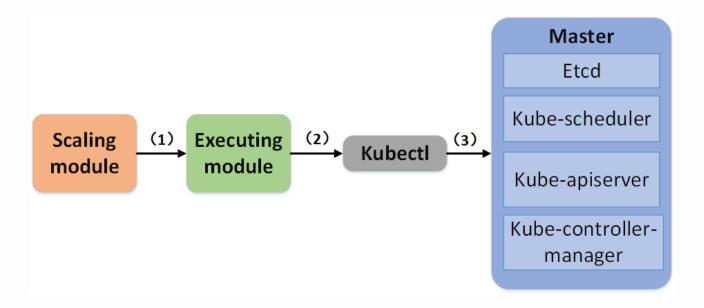
U_{limit} is the CPU utilization corresponding to T_{limit}

Scaling Module

Goal:

 Scale up or down according to the monitoring data from monitor module, while meet the QoS requirements by QoS module

Cluster Scaling Algorithm:


- If $U > U_{threshold}$,
 - $N_{add} = 2 * N_{add}$, if the cluster scaled up last time
 - N_{add} = 1, if the cluster don't scaled up last time
- If U < 40% ,
 - $N_{remove} = 2 * N_{remove}$, if the cluster scaled down last time
 - N_{remove} = 1, if the cluster don't scaled down last time

Executing Module

Goal:

- Implement each operation for cluster scaling based on the output of the scaling module
 - Generate specific command for Kubectl to realize the scaling operation

- System design
- Evaluation
- Conclusion

5 physical machines:

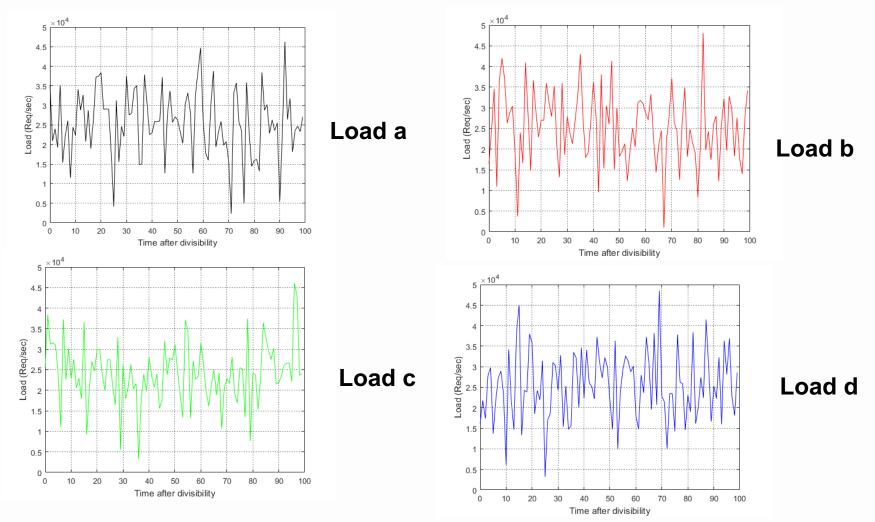
4-cores Intel(R) Core(TM) i5-4460S 2.9 GHz CPU, 4 GB memory and 1 TB disk

- CentOS Linux release 7.5
- Kubernetes v1.10 and Docker v18.06-ce

Heapster v1.5.2 and InfuxDB v1.3.3

Testing application:

Ticket Monster, deployed in Deployment manner with the HorizontalPodAutoscaler


> Workloads:

Apache JMETER, simulate the workload that users send HTTP requests to the Ticker Monster

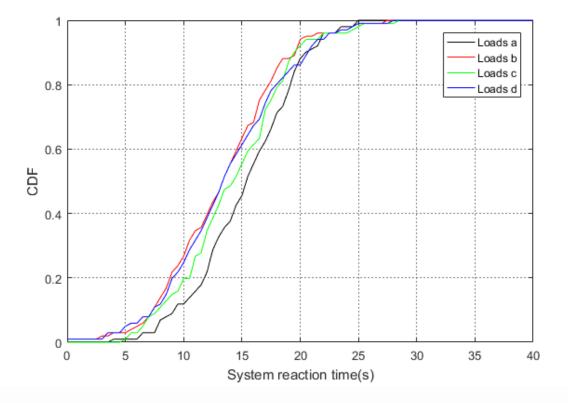
Workloads

Workload Examples:


Improvement of CPU utilization

CDF of CPU utilization of the original Kubernetes cluster and the Kubernetes cluster with our system:

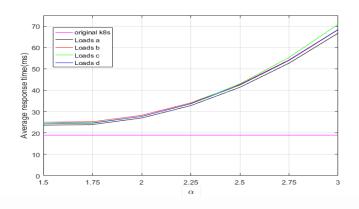
The average CPU utilization of the original Kubernetes cluster and Kubernetes cluster with our system under four different workloads:

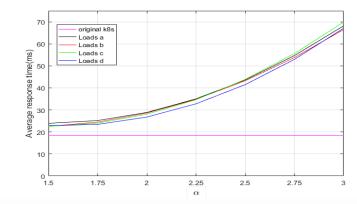


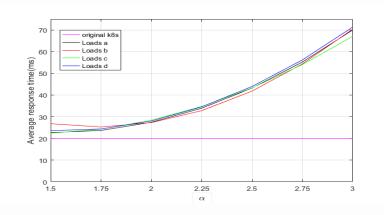
Improved by 28.99%

Reaction time

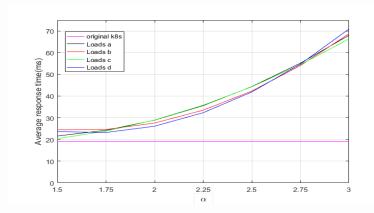
CDF of the system reaction time under four different workloads:




> The average reaction time of the system is about 15s.


シェズ えん と Parameter Selection

QoS coefficient α under different duration T_{dur}



T_{dur}=10s

T_{dur}=30s

select $\alpha = 2$

T_{dur}=40s

- System design
- Evaluation
- Conclusion

Conclusion

- We propose a system, which dynamically adjusts scale of a Kubernetes cluster, to improve the resource utilization.
- The system can automatically derive a threshold of system resource utilization according to the specific application in a Kubernetes cluster, which promises QoS in a Kubernetes cluster.
- The experimental results show that CPU utilization of a Kubernetes cluster with our system is improved by 28.99% than that of a original Kubernetes cluster on average.

Thank you! Q & A