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» Huge electricity consumption
- Data centers consume approximately 1.12% of all electricity worldwide
« A half of the operational expenses within a data center are consumed
by the electricity cost
» Billing mechanism
 Many cloud providers, such as Amazon, gradually support resource
provisioning and billing in second manner

> Low cluster resource utilization

« Cluster is generally designed to handle peak loads
- During ordinary times, the load of a server is less than 50% of peak
and the CPU utilization of a server rarely goes beyond 40%

CLOUD SERVICES




Our work

» Target to widely-deployed web applications
> Find out a threshold of resource utilization

* Guarantee QoS in a Kubernetes cluster
 Determine the time when to scale up the cluster
» Design a system to scale up or down the cluster

« Guarantee quality of service
* Improve the cluster resource utilization
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FALLY Overview

» Our system adopts a Monitor-Analyze-Plan-Execute
(MAPE) model, include four modules:

*Monitor module

OQQS module Kubernetes
The proposed system Node
: Master
m Monit
*Scaling module 1 el -
o . Kubelet
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| — Kubectl— 1 No;ie
Scaling Kube-apiserver Pod ... Pod
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v Kube-controller- Kubelet
Executing manager
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Monitor module is used to monitor CPU utilization of a whole
Kubernetes cluster.

> Workflow:

Monitor center --> Heapster --> cAdvisor --> Heapster -->
InfluxDB --> monitor center

(2)

Pod
Monitor center l 3) Kubelet
Pod -

T
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> Initialized Parts

* Run once to obtain the relationship between QoS and CPU
utilization

> Goal:
« Obtain a proper threshold of CPU utilization

« Guarantee quality of service

» Metrics of QoS: response time
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> Workflow:

*Step1: The control center sends a HTTP request to the application,
and then receives the response to calculate the response time.

*Step2: The control center gets CPU utilization from monitor
module.

*Step3: The control center changes CPU utilization of the server,
and then rerun step1;

» Thus, we get the relationship:
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| Node
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: Pod
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> The upper bound of response time:

Tiimit = aXT pormal
T...ma 1S the response time whose relative CPU utilization
is 40‘70

a is determined by users to meet their requirements
» Thus, we get the threshold of CPU utilization Uy, csho/4:

U 1 90%  Uiimit = 90%
threshold — Uy Jimit Utimie < 90%

Uit is the CPU utilization corresponding to T;,,;;
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> Goal:

« Scale up or down according to the monitoring data from

monitor module, while meet the QoS requirements by QoS
module

» Cluster Scaling Algorithm:

- IfU> Uthresholds
*  N.ga =2 * Naqq, if the cluster scaled up last time
* N.,qq =1, if the cluster don't scaled up last time
« IfU<40%,
Nremove = 2 * Nremoves If the cluster scaled down last time
Nremove = 1, if the cluster don't scaled down last time
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> Goal:

Implement each operation for cluster scaling based on the
output of the scaling module
« Generate specific command for Kubectl to realize the scaling

operation
Master
Etcd
Kube-scheduler
i (1) i (2) (3)
Scaling Executing Kubectl
module module

Kube-apiserver

Kube-controller-
manager




Outline

e Evaluation



r#x4+% Experimental Setup

SHANGHAI JIAO TONG

» 5 physical machines:

4-cores Intel(R) Core(TM) i5-4460S 2.9 GHz CPU, 4 GB memory
and 1 TB disk

» CentOS Linux release 7.5

» Kubernetes v1.10 and Docker v18.06-ce
Heapster v1.5.2 and InfuxDB v1.3.3

» Testing application:

Ticket Monster, deployed in Deployment manner with the
HorizontalPodAutoscaler

> Workloads:

Apache JMETER , simulate the workload that users send HTTP
requests to the Ticker Monster
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» CDF of CPU utilization of the original Kubernetes cluster and the
Kubernetes cluster with our system:

0.9 |- k8s cluster with our system __________ _______ r _________ i
' original k8s cluster P A

CDF
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» The average CPU utilization of the original Kubernetes cluster
and Kubernetes cluster with our system under four different
workloads:
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» CDF of the system reaction time under four different
workloads:
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» The average reaction time of the system is about 15s.
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Conclusion

» We propose a system, which dynamically adjusts scale of
a Kubernetes cluster, to improve the resource utilization.

» The system can automatically derive a threshold of
system resource utilization according to the specific
application in a Kubernetes cluster, which promises QoS
in a Kubernetes cluster.

» The experimental results show that CPU utilization of a
Kubernetes cluster with our system is improved by
28.99% than that of a original Kubernetes cluster on
average.
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