
Dynamically Adjusting Scale of a Kubernetes

Cluster Under QoS Guarantee

Presenter: Li Lu

Qiang Wu, Jiadi Yu, Li Lu, Shiyou Qian, Guangtao Xue
Shanghai Jiao Tong University

Cluster Autoscaler for Kubernetes

Ø Huge electricity consumption
• Data centers consume approximately 1.12% of all electricity worldwide
• A half of the operational expenses within a data center are consumed

by the electricity cost
Ø Billing mechanism

• Many cloud providers, such as Amazon, gradually support resource
provisioning and billing in second manner

Ø Low cluster resource utilization
• Cluster is generally designed to handle peak loads
• During ordinary times, the load of a server is less than 50% of peak

and the CPU utilization of a server rarely goes beyond 40%

Our work

ØTarget to widely-deployed web applications
ØFind out a threshold of resource utilization

• Guarantee QoS in a Kubernetes cluster
• Determine the time when to scale up the cluster

ØDesign a system to scale up or down the cluster
• Guarantee quality of service
• Improve the cluster resource utilization

Outline

• System design
• Evaluation
• Conclusion

Overview

Ø Our system adopts a Monitor-Analyze-Plan-Execute
(MAPE) model, include four modules:
•Monitor module
•QoS module
•Scaling module
•Executing module

Monitor Module
Ø Goal:

Monitor module is used to monitor CPU utilization of a whole
Kubernetes cluster.

Ø Workflow:
Monitor center --> Heapster --> cAdvisor --> Heapster -->
InfluxDB --> monitor center

QoS Module

Ø Initialized Parts
• Run once to obtain the relationship between QoS and CPU

utilization

Ø Goal:
• Obtain a proper threshold of CPU utilization
• Guarantee quality of service

ØMetrics of QoS: response time

Relationship between QoS and CPU

Ø Workflow:
•Step1: The control center sends a HTTP request to the application,
and then receives the response to calculate the response time.
•Step2: The control center gets CPU utilization from monitor
module.
•Step3: The control center changes CPU utilization of the server,
and then rerun step1;

Ø Thus, we get the relationship:

Threshold of CPU utilization

Ø The upper bound of response time:

Tnormal is the response time whose relative CPU utilization
is 40%
𝛼 is determined by users to meet their requirements
Ø Thus, we get the threshold of CPU utilization Uthreshold:

Ulimit is the CPU utilization corresponding to Tlimit

𝑇!"#"$ = 𝛼×𝑇normal

𝑈threshold = +
90% 𝑈𝒍𝒊𝒎𝒊𝒕 ≥ 90%
𝑈limit 𝑈𝒍𝒊𝒎𝒊𝒕 < 90%

Scaling Module

Ø Goal:
• Scale up or down according to the monitoring data from

monitor module, while meet the QoS requirements by QoS
module

Ø Cluster Scaling Algorithm:
• If U > Uthreshold,

• Nadd = 2 * Nadd, if the cluster scaled up last time
• Nadd = 1, if the cluster don't scaled up last time

• If U < 40% ,
• Nremove = 2 * Nremove, if the cluster scaled down last time
• Nremove = 1, if the cluster don't scaled down last time

Executing Module

Ø Goal:
• Implement each operation for cluster scaling based on the

output of the scaling module
• Generate specific command for Kubectl to realize the scaling

operation

Outline

• System design
• Evaluation
• Conclusion

Experimental Setup

Ø 5 physical machines:
4-cores Intel(R) Core(TM) i5-4460S 2.9 GHz CPU, 4 GB memory
and 1 TB disk

Ø CentOS Linux release 7.5
Ø Kubernetes v1.10 and Docker v18.06-ce

Heapster v1.5.2 and InfuxDB v1.3.3

Ø Testing application:
Ticket Monster, deployed in Deployment manner with the
HorizontalPodAutoscaler

Ø Workloads:
Apache JMETER , simulate the workload that users send HTTP
requests to the Ticker Monster

Workloads

Workload Examples:

Load a
Load b

Load c Load d

Improvement of CPU utilization

Ø CDF of CPU utilization of the original Kubernetes cluster and the
Kubernetes cluster with our system:

Improvement of CPU utilization

Ø The average CPU utilization of the original Kubernetes cluster
and Kubernetes cluster with our system under four different
workloads:

Improved by 28.99%

Reaction time

Ø CDF of the system reaction time under four different
workloads:

Ø The average reaction time of the system is about 15s.

Parameter Selection

Tdur=10s Tdur=20s

Tdur=30s Tdur=40sselect α = 2

QoS coefficient α under different duration Tdur

Outline

• System design
• Evaluation
• Conclusion

Conclusion

Ø We propose a system, which dynamically adjusts scale of
a Kubernetes cluster, to improve the resource utilization.

Ø The system can automatically derive a threshold of
system resource utilization according to the specific
application in a Kubernetes cluster, which promises QoS
in a Kubernetes cluster.

Ø The experimental results show that CPU utilization of a
Kubernetes cluster with our system is improved by
28.99% than that of a original Kubernetes cluster on
average.

Thank you！
Q & A

