LipPass: Lip Reading-based User Authentication on Smartphones Leveraging Acoustic Signals

Presenter: Li Lu

Li Lu¹, Jiadi Yu¹, Yingying Chen², Hongbo Liu³, Yanmin Zhu¹, Yunfei Liu¹, Minglu Li¹ Shanghai Jiao Tong University¹ Rutgers University² Indiana University-Purdue University Indianapolis³

Increasing Security Concerns of Mobile Devices

Mobile Device

- Pervasive and common
- Frequent storage medium for sensitive information
 - ID number, CVS code of credit cards
- Concern about privacy leakage in mobile devices
 - 78% users worry about losing sensitive data on their personal devices (Symantec[1])
- User Authentication
 - First guard for privacy on mobile devices
 - Direct and efficient

Existing Authentication Mechanisms

> Password

- Most widely deployed
- But hard to remember & vulnerable to stealing attacks
- > Biometric-based approaches
 - Fingerprint, Face recognition, Voiceprint
 - Based on physiological characteristics \rightarrow
 - Vulnerable to replay attacks
 - Susceptible to ambient environments (e.g., lights & noises)
- > To deal with the weakness,
 - Behavioral characteristic-based authentication

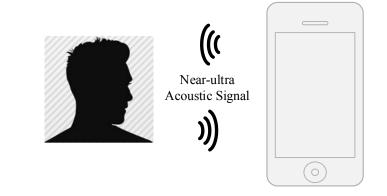
Outline

• Preliminary

- System Design
- Evaluation
- Conclusion

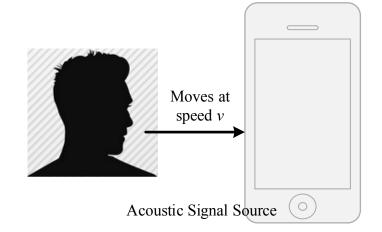
Motivation

- > When a user speaks
 - Lip movements
 - Different users \rightarrow different lip movements
- Capturing lip movements
 - Utilizing audio devices on smartphones
 - Emitting acoustic signal by the speaker, and receiving reflected signal through the microphones
 - Lip movements \rightarrow Doppler effect of acoustic signals



Doppler Effect

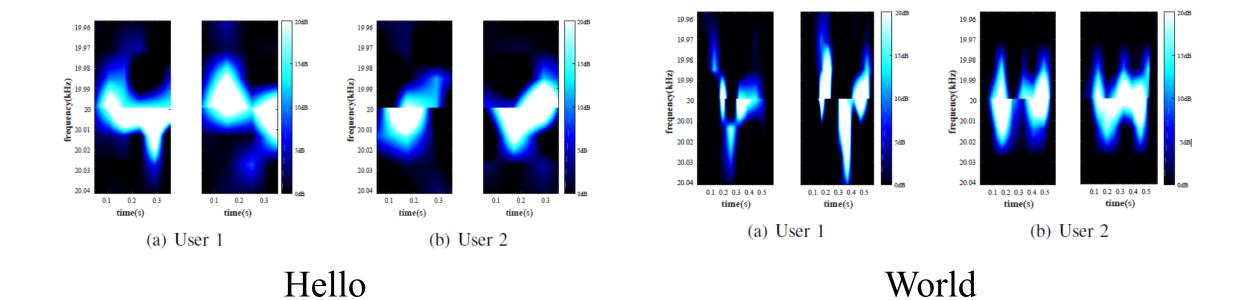
- An object moving (at speed v) relative to acoustic signal source brings a frequency change
 - $\Delta f = \frac{v}{c} \times f_0$, where *c* and f_0 are speed and frequency of acoustic signals respectively
- Audio device setting
 - $f_0 = 20$ kHz, sampling rate: 44.1kHz
- \succ Time-domain \rightarrow Frequency-domain
 - 2048-point FFT



Difference in Doppler Profiles

- > When speaking the same passphrase
 - Doppler profiles of different users are significantly different
 - Doppler profiles of the same user are similar

 \succ Doppler profiles caused by lip movements \rightarrow User authentication



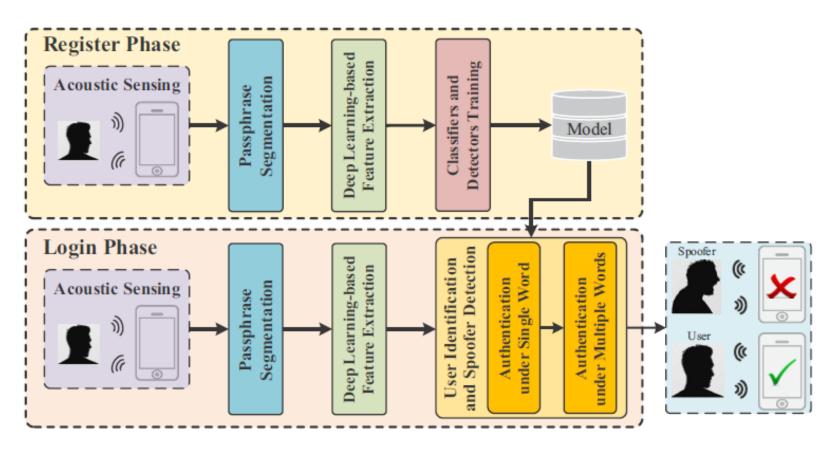
Outline

- Preliminary
- System Design
- Evaluation
- Conclusion

Overview

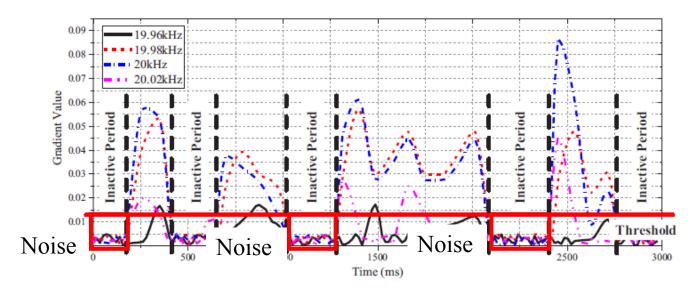
≻ Two Phases:

- Register & Login
- ≻ Four Processes:
 - Passphrase Segmentation
 - Deep Learning-based Feature Extraction
 - Classifiers and Detectors Training
 - User Identification and Spoofer Detection



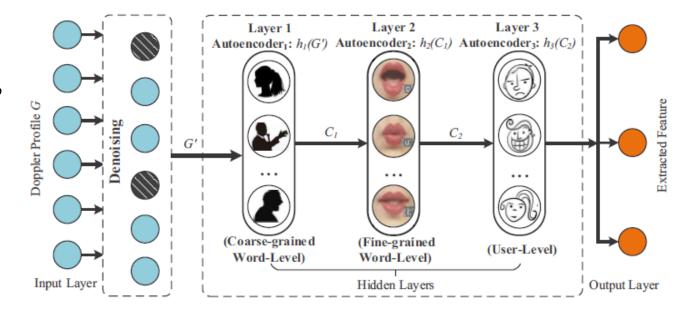
Passphrase Segmentation

- \succ A passphrase \rightarrow several words
 - There is usually a short interval between two successive words
- > Speaking words vs. Intervals between words
 - Speaking \rightarrow significant Doppler effect caused by lip movements
 - Interval \rightarrow only white noises
- Threshold-based approach



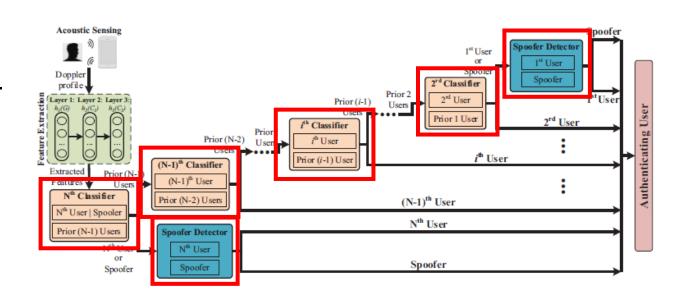
Deep Learning-based Feature Extraction

- From acoustic signal episode of each word
 - Extract efficient and reliable features
- Three-layer autoencoder-based Deep Neural Network
 - Non-linear feature extraction
 - Abstract compressed representations through unsupervised manner
- 1st Layer: coarse-grained word-level
 2nd Layer: fine-grained word-level (e.g., phoneme level)
 3rd Layer: user-level



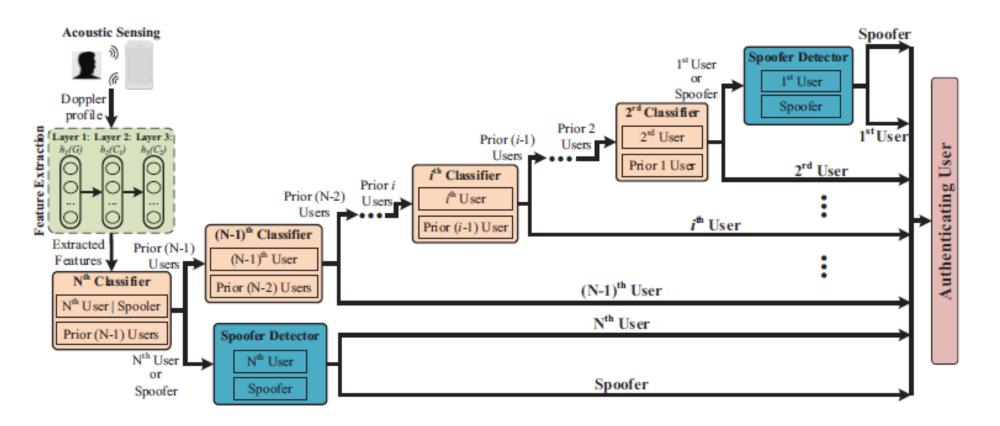
Classifiers and Detectors Training

- Multi-user Classifier & Spoofer Detector Training
 - SVM (Support Vector Machine) & SVDD (Support Vector Domain Description)
- Users register to the system sequentially
 - Reconstruct a classifier whenever a new user registers → significant computational complexity
 - Multiple binary classifiers training
- \succ Assume *i*th user registers to the system
 - Train a binary classifier through oneversus-rest manner (i.e., *ith* user & other *i*-1 users)
 - Train a spoofer detector through SVDD (i.e., *i*th user & spoofers)



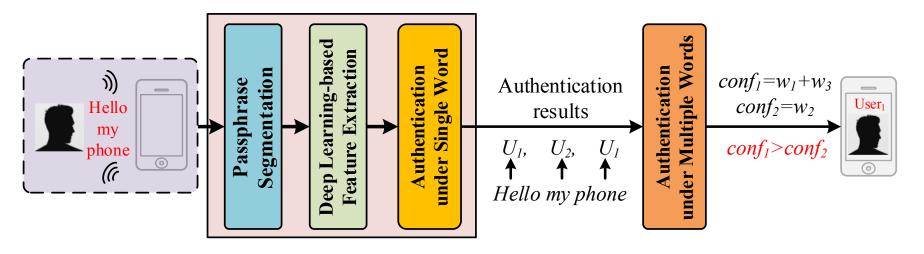
User Identification & Spoofer Detection

- > Authentication under single word
 - Binary tree-based authentication



User Identification & Spoofer Detection (Con.)

- Authentication under multiple words
 - Strengthen robustness of authentication result
- > An example (User₁ & User₂ register to the system):
 - A user speaks 'Hello my phone' to login
 - Three labels (i.e., U_1 , U_2 , U_1) can be obtained through the approach above
 - Calculate two confidences for two users (i.e., $conf_1 > conf_2$)
 - The user is identified as User₁



Outline

- Preliminary
- System Design
- Evaluation
- Conclusion

Experiment Setup

➤ 48 volunteers in 4 real environments respectively

- Volunteers: 24 males and 24 females, whose ages range in [18,52]
- Environments: lab (bright and quiet), station (bright but noisy), dark lab (quiet but dark), pub (dark and noisy).

➤ 10 passphrases:

- Each of them contains 1-10 words
- Each word contains >4 phonemes

Lab

Dark Lab

Pub

Overall Performance

- Achieve over 80% accuracy in identifying registered users
- Average 90.2% accuracy in user authentication
- Average 93.1% accuracy in spoofer detection

	U ₁ - 0.837	0.033	0.006	0.024	0.029	0.005	0.050	0.000	0.010	0.000	0.006 -
Ground Truth	U ₂ - 0.020	0.857	0.024	0.030	0.031	0.000	0.010	0.006	0.013	0.006	0.003 -
	U ₃ - 0.010	0.012	0.871	0.024	0.010	0.006	0.010	0.047	0.000	0.004	0.006 -
	U ₄ - 0.024	0.000	0.010	0.925	0.000	0.006	0.012	0.000	0.003	0.010	0.010 -
	U ₅ - 0.006	0.000	0.010	0.000	0.933	0.020	0.000	0.009	0.010	0.000	0.012 -
	U ₆ - 0.020	0.006	0.000	0.010	0.010	0.930	0.000	0.018	0.000	0.000	0.006 -
	U ₇ - 0.020	0.006	0.000	0.000	0.010	0.030	0.900	0.000	0.010	0.012	0.012 -
	U ₈ - 0.011	0.012	0.020	0.010	0.010	0.006	0.006	0.910	0.000	0.006	0.009 -
	U ₉ - 0.012	0.010	0.010	0.010	0.006	0.000	0.002	0.006	0.938	0.000	0.006 -
	U ₁₀ - 0.020	0.010	0.020	0.000	0.010	0.000	0.000	0.010	0.000	0.920	0.010 -
Spo	ofer - 0.016	0.010	0.012	0.006	0.010	0.000	0.003	0.006	0.000	0.006	0.931 -
	U ₁	U_2	U_3	U_4	U_5	U ₆	U ₇	U_8	U_9	U_{10}	Spoofer
	Authentication Results										

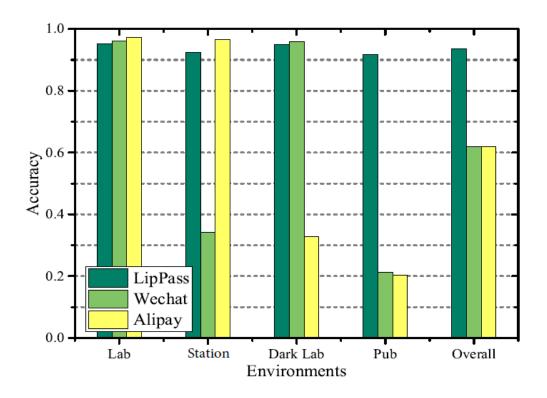
Comparison with other Authentication System

Ideal environment (Lab)

• LipPass: 95.3% vs. Wechat: 96.1% & Alipay: 97.2% (similar performance)

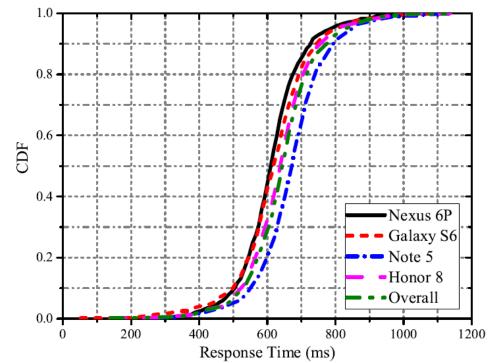
Noisy environment (Station)

- LipPass: 92.4% vs. Wechat: 34.3% (significantly better than Wechat)
- Dark environment (Dark Lab)
 - LipPass: 94.9% vs. Alipay: 32.9% (significantly better than Alipay)
- Worst environment (Pub)
 - LipPass: 91.7% vs. Wechat: 21.3% & Alipay: 20.4% (better than other two approaches)



Response time = Login Time – End Speaking Time

- CDF of response time
 - 90% of volunteers are with less than 0.8s
 - Average response time: 0.64s
- LipPass is responsive



Outline

- Preliminary
- System Design
- Evaluation
- Conclusion

Conclusion

> Observation:

- reveal the feasibility of utilizing Doppler profiles induced by lip movements for user authentication
- Contribution:
 - Propose a lip reading-based user authentication system
 - Design a deep learning-based method to abstract high-level behavioral characteristics of lip movements
 - Develop a binary tree-based authentication approach to identify each individual
- > Evaluation: evaluate performances of *LipPass* in four real environments
 - Achieve 90.2% accuracy in user authentication
 - Achieve 93.1% accuracy in spoofer detection

