LipPass: Lip Reading-based User Authentication
on Smartphones Leveraging Acoustic Signals
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Increasing Security Concerns of Mobile Devices

» Mobile Device
e Pervasive and common
* Frequent storage medium for sensitive information
e ID number, CVS code of credit cards

» Concern about privacy leakage in mobile devices

* 78% users worry about losing sensitive data on
their personal devices (Symantec|[1])

» User Authentication
* First guard for privacy on mobile devices

 Direct and efficient




Existing Authentication Mechanisms

» Password

* Most widely deployed

* But hard to remember & vulnerable to stealing attacks
» Biometric-based approaches

* Fingerprint, Face recognition, Voiceprint

* Based on physiological characteristics =

* Vulnerable to replay attacks
* Susceptible to ambient environments (e.g., lights & noises)
» To deal with the weakness,

 Behavioral characteristic-based authentication




* Preliminary



» When a user speaks

* Lip movements

 Different users = different lip movements
» Capturing lip movements

» Utilizing audio devices on smartphones

* Emitting acoustic signal by the speaker, and receiving
reflected signal through the microphones

* Lip movements = Doppler effect of acoustic signals



Doppler Effect

» An object moving (at speed v) relative to acoustic signal

source brings a frequency change

« Af = E X fo, where ¢ and f, are speed and frequency of

acoustic signals respectively

Moves at

speed v
—_—

» Audio device setting
* f,=20kHz, sampling rate: 44.1kHz

Acoustic Signal Source

» Time-domain = Frequency-domain

 2048-point FFT



Difference in Doppler Profiles

» When speaking the same passphrase
* Doppler profiles of different users are significantly different

* Doppler profiles of the same user are similar

» Doppler profiles caused by lip movements = User authentication
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* System Design
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Passphrase Segmentation

» A passphrase = several words

* There 1s usually a short interval between two successive words
» Speaking words vs. Intervals between words

* Speaking -2 significant Doppler effect caused by lip movements

 Interval = only white noises

» Threshold-based approach
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Deep Learning-based Feature Extraction

» From acoustic signal episode of each word

e Extract efficient and reliable features

» Three-layer autoencoder-based Deep Neural Network
* Non-linear feature extraction

* Abstract compressed representations through unsupervised manner
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Classifiers and Detectors Training

» Multi-user Classifier & Spoofer Detector Training
* SVM (Support Vector Machine) & SVDD (Support Vector Domain Description)

» Users register to the system sequentially
* Reconstruct a classifier whenever a new user registers = significant computational
complexity
* Multiple binary classifiers training

]

» Assume i user registers to the system
* Train a binary classifier through one- ==y
versus-rest manner (i.e., i user & £0.0.9:

other i-/ users)
* Train a spoofer detector through
SVDD (i.e., i”" user & spoofers)
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User Identification & Spoofer Detection

» Authentication under single word

* Binary tree-based authentication

Acoustic Sensing

Spoofer
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User Identification & Spoofer Detection (Con.)

» Authentication under multiple words
* Strengthen robustness of authentication result
» An example (User; & User, register to the system):
* A user speaks ‘Hello my phone’ to login
* Three labels (1.e., U,, U,, U,) can be obtained through the approach above
* Calculate two confidences for two users (1.€., conf;>conf>)

* The user is 1dentified as User,
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e Evaluation



Experiment Setup

» 48 volunteers in 4 real environments respectively

* Volunteers: 24 males and 24 females, whose ages range in [18,52
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* Environments: lab (bright and quiet),

L

2

station (bright but noisy),
dark lab (quiet but dark),
pub (dark and noisy).

» 10 passphrases:

* Each of them contains 1-10 words
* Each word contains >4 phonemes

Dark Lab Pub



Overall Performance

» Achieve over 80% accuracy in
1dentifying registered users

» Average 90.2% accuracy in user
authentication

» Average 93.1% accuracy in spoofer
detection
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Comparison with other Authentication System

» Ideal environment (Lab)
* LipPass: 95.3% vs. Wechat: 96.1% & Alipay: 97.2% (similar performance)

» Noisy environment (Station)

« LipPass: 92.4% vs. Wechat: 34.3% T -7 m =

(significantly better than Wechat) 0.84--Jl | - SN | N RS S—
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» Worst environment (Pub) Sy Cum R e
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Response Time

» Response time = Login Time — End Speaking Time

1.0

» CDF of response time

0.8 <

 90% of volunteers are with less than 0.8s

* Average response time: 0.64s 06+

CDF
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 Conclusion



Conclusion

» Observation:

* reveal the feasibility of utilizing Doppler profiles induced by lip movements for
user authentication

» Contribution:
* Propose a lip reading-based user authentication system

* Design a deep learning-based method to abstract high-level behavioral
characteristics of lip movements

* Develop a binary tree-based authentication approach to identify each individual
» Evaluation: evaluate performances of LipPass in four real environments

* Achieve 90.2% accuracy in user authentication
* Achieve 93.1% accuracy in spoofer detection



Thank you!
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