
IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 1

A Double Auction Mechanism to Bridge Users’
Task Requirements and Providers’ Resources in

Two-Sided Cloud Markets
Li Lu, Jiadi Yu∗, Member, IEEE, Yanmin Zhu, Member, IEEE, and Minglu Li

Abstract—Double auction-based pricing model is an efficient pricing model to balance users’ and providers’ benefits. Existing double
auction mechanisms usually require both users and providers to bid with the unit price and the number of VMs. However, in practice
users seldom know the exact number of VMs that meets their task requirements, which leads to users’ task requirements inconsistent
with providers’ resource. In this paper, we propose a truthful double auction mechanism, including a matching process as well as a
pricing and VM allocation scheme, to bridge users’ task requirements and providers’ resources in two-sided cloud markets. In the
matching process, we design a cost-aware resource algorithm based on Lyapunov optimization techniques to precisely obtain the
number of VMs that meets users’ task requirements. In the pricing and VM allocation scheme, we apply the idea of second-price
auction to determine the final price and the number of provisioned VMs in the double auction. We theoretically prove our proposed
mechanism is individual-rational, truthful and budget-balanced, and analyze the optimality of proposed algorithm. Through simulation
experiments, the results show that the individual profits achieved by our algorithm are 12.35% and 11.02% larger than that of scale-out
and greedy scale-up algorithms respectively for 90% of users, and the social welfare of our mechanism is only 7.01% smaller than that
of the optimum mechanism in the worst case.

Index Terms—Double auction mechanism, two-sided cloud markets, VM trading, Lyapunov optimization.

F

1 INTRODUCTION

IN cloud trading markets, providers sell resources, such
as VMs, while users purchase resources for tasks. Every

participant in such a market aims to maximize their indi-
vidual profits. Pricing is a critical factor to balance benefits
of both users and providers. Typically, an efficient pricing
model can maximize individual profits of each participant
in the trading. However, although providers offer multiple
pricing models, e.g., Amazon EC2 [1] employs on-demand,
reserve and spot pricing models, and Microsoft Azure [2]
employs pay-as-you-go, resellers pricing models etc., users
still cannot easily make an optimum resource provisioning
decision to meet their requirements. This is because the prior
knowledge of users in cloud trading is quite different from
that of providers, i.e., users can only assess the computing
requirement of their tasks, and cannot match these require-
ments to the capability of VMs that providers offer.

Although IaaS providers usually present the capacity
of their VMs, such as the number of vCPU, memory, etc,
the actual capability, i.e., the computational or storage ca-
pability, of VMs are not clear for users. For example, a
user intends to provision VMs for a website, whose daily
requests are about 100,000. However, IaaS providers like
AWS only provide the capacity of VMs. Thus, it is necessary
for the user to assess the actual capability of every VM types
and select appropriate one for the website. To help users

• L. Lu, J. Yu, Y. Zhu, and M. Li are with the Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai,
P.R.China, 200240.
E-mail: {luli jtu, jiadiyu, yzhu, mlli}@sjtu.edu.cn.

• (Corresponding Author: Jiadi Yu.)

select VMs and deploy their applications on IaaS cloud,
many software vendors even provide guides [3], [4], [5], [6].
For example, Scylla provides some performance evaluation
results on deploying NoSQL on AWS EC2, which help users
to choose appropriate VMs for NoSQL [3]. However, these
guides are only suggestions, with which users still need to
select VMs manually, which obstruct users to adopt cloud
as the main computing paradigm. This problem would be
more emerging in two-sided cloud markets.

A two-sided cloud market [7] means a user can pur-
chase cloud resources from multiple providers, meanwhile a
provider can sell cloud resources to multiple users, which is
illustrated in Fig. 1. Since different providers offer different
pricing models, it is more difficult and confusing for users
to make an optimum provisioning decision. Double auction
is an efficient trading mechanism for two-sided markets,
which enables users and providers bid with their own
needs. Li et al. [8] design a double auction mechanism to
enable a federation of providers trade with each other. Also,
Samimi et al. [9] propose a combinatorial double auction
to enable users bid with combinations of resources. How-
ever, there is an underlying assumption in these existing
mechanisms which is not realistic, i,e., users and providers
in the trading need to know the capability of each VM,
and further check whether the capability of provisioned re-
sources can meet the requirement of their tasks. In practice,
users usually do not precisely know the capability of each
VM offered by IaaS providers. Therefore, it is necessary to
design a double auction mechanism which bridges users’
task requirements and providers’ cloud resources.

To design a double auction mechanism for bridging
users’ task requirements and providers’ resources in IaaS

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 2

User 1 User 2

User N

User 3

User 4 User N-3

User N-1User N-2

Provider 1 Provider 2

Provider M

Trading

Fig. 1. Illustration of a two-sided cloud markets.

cloud, we face several challenges as follows. First, since
users’ task requirements are different from providers’ re-
sources, i.e., users’ task requirements are presented in a com-
puting capability form while providers’ resources are shown
in VM form, it is hard to bridge the bids between users and
providers in the double auction mechanism. Next, a double
auction mechanism should be individual-rational, truthful
and budget-balanced, but respectively applying truthful
auction mechanisms for users and for providers cannot lead
to a truthful double auction in two-sided cloud markets.
Finally, since the workload of users’ tasks fluctuates over
time, users’ actual task requirements for resources cannot
be accurately determined.

In this paper, we present a truthful double auction mech-
anism for VM trading to bridge users’ task requirements
and providers’ resources in two-sided cloud markets. To
implement the double auction mechanism, we first model
the VM trading with double auction, and then propose a
matching process as well as a pricing and VM allocation
scheme for the double auction mechanism. In the matching
process, to precisely obtain the number of VMs that needs to
be provisioned for users’ task requirements under workload
fluctuation, we formulate the VM provisioning problem as
an optimization problem, and solve it through Lyapunov
optimization techniques. In the pricing and VM allocation
scheme, we apply the idea of second-price auction to de-
termine the final price and the number of allocated VMs of
the double auction based on the matching results. Mean-
while, we prove the proposed double auction mechanism
is individual-rational, truthful and budget-balanced, and
analyze the optimality of the proposed algorithm. Finally,
based on TPC-W workload and OpenStack performance
data, we conduct simulations to evaluate the performance
of our mechanism as well as algorithm, and results show
that our mechanism and algorithm are feasible and efficient.

We highlight our main contributions as follows:

• We model the VM trading with double auction, and
design a double auction mechanism to bridge users’
task requirements and providers’ resources in two-
sided markets, from which both cloud providers and
users are able to benefit.

• We formulate the VM provisioning problem as an op-
timization problem to minimize users’ cost, and pro-
pose a cost-aware resource provisioning algorithm
to solve the problem using Lyapunov optimization
techniques.

• We theoretically prove that the proposed double
auction mechanism is individual-rational, truthful as
well as budget-balanced, and analyze the optimality
of the relative cost-aware resource provisioning algo-
rithm.

In the rest of this paper, the related works are reviewed
in Section 2. Then we model the VM trading in two-sided
markets with double auction, and formulate the VM provi-
sioning problem as an optimization problem in Section 3.
Section 4 and Section 5 present design details of a double
auction mechanism for two-sided markets and a coat-aware
resource provisioning algorithm respectively. In Section 6,
we prove the proposed double auction mechanism satisfy-
ing individual rationality, truthfulness as well as budget bal-
ance, and analyze the optimality of the proposed algorithm.
Section 7 shows our performance evaluation results. Finally,
we make a conclusion in Section 8.

2 RELATED WORK

There are some pricing models in commercial cloud plat-
forms, such as on-demand, reserve [1] and spot [10] pricing
models. Google Cloud Platform [11] even provides a slight
amount of permanent free resources. Cloud providers em-
ploy these pricing models to incentivize different kinds of
users to employ their cloud resources. Under these pricing
models, many researches [12], [13], [14], [15], [16] focus on
determining provisioning decisions to optimize users’ prof-
its. [12], [13], [14] analyze the spot pricing model for AWS
EC2, and derive optimal bidding strategies for users based
on provider pricing model. [15], [16] design provisioning
algorithms based on users’ needs under on-demand and
reserve pricing models. Recently, some works [17], [18], [19]
introduce the concept of group buying into cloud resources
trading and enable users be more confident to adopt cloud
computing as their main computing paradigm. However,
these works only focus on determining VM provisioning
under fixed pricing models, which do not consider the
relationship between demand and supply in cloud markets.

To take the relationship between demand and supply
into consideration, there are some works [20], [21], [22], [23],
[24] focusing on designing auction-based pricing models.
[20], [21] propose online combinatorial auction mechanisms
to optimize long-term efficiency and model heterogeneous
VMs in practice, which enable users bid with a VM provi-
sioning decision instead of the number of each type VMs.
These approaches release users from selecting specific type
VMs, and improve the profits of users in the trading. [22],
[23], [24] take users’ heterogeneous demands into consid-
eration and propose online algorithms based on auction
framework. More recently, some works [25], [26], [27], [28]
employ game theory for dynamic pricing of cloud resources
and further improve users’ profits in cloud resource trading.
However, since there is only one provider in the auction,
users do not have the choice of purchasing resource from
multiple providers to achieve higher cost-efficiency.

As the development of secure data collaboration tech-
niques [29], [30], cloud integration services become popular
[31], [32], [33], which leads to a trend that multiple users and
providers participate in cloud trading, which depicts a two-
sided cloud market. To enable multiple users and multiple
providers participate in the trading, double auction-based
pricing models in two-sided markets attract attentions of
researchers. Li et al. [8] propose a double auction mecha-
nism in a cloud federation market, in which a cloud has the
roles of both buyer and seller. The buy-bids and sell-bids

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 3

Provider 1 Provider 2 Provider M

Cloud Provider

User 1 User 2 User N

Cloud User

(5) Price

Payment

(5) Resource

Allocation

(4) Price

Payment

(3) Resource

Request

(3) Price

Charging

(1) Submit

Buy-bid

Sell-bids

<X(i)1, p
(i)
1>

type 1

<X(i)K, p
(i)
K>

type K

Buy-bids

<
(i)
, c

(i)
>

requirement price

(2) Matching Auctioneer

(1) Submit

Sell-bid

(4) Resource

Response

Fig. 2. Workflow in a two-sided market with double auction.

are all multi-unit bids in this mechanism. They also derive
true values of bids for providers in the cloud federation
market. Samimi et al. [9] design a combinatorial double
auction mechanism for resources allocation. This mecha-
nism enables participants submit combinatorial bids. Zheng
et al. [34] design a double auction for network resources
instead of typical computing resources. Some other works
[35], [36] consider the fairness in cloud resource trading,
which reduce the probability of user drop problem and
ensure the long-term developments of cloud markets. All
these works assume users have the prior knowledge of
providers’ VM capabilities. However, in real cloud trading
markets, users’ task requirements and providers’ resources
are presented in different forms, i.e., users only know the
computing requirements of their tasks instead of providers’
VM capabilities. Although cloud providers usually offer
detailed VM capacity information [1], such as the number
of vCPU, memory, etc, it is difficult for users to match their
computing requirements with the various VM capacities,
and further incapable to select appropriate VMs for the tasks
[3], [4], [5]. Such a problem is more emerging when dif-
ferent cloud providers are introduced. For example, Scylla
provides some performance evaluation results on deploying
NoSQL on AWS EC2, which help users to choose appro-
priate VMs for NoSQL on AWS [3], while TechRepublic
provides a guide to help users choose appropriate VMs in
Windows Azure [6]. Thus, it is necessary to automatically
bridge users’ task requirements and providers’ resources.

Our work focus on designing a double auction mecha-
nism for two-sided markets to bridge users’ task require-
ments and providers’ cloud resources in their bids.

3 SYSTEM MODEL

In this section, we first model the VM trading in two-sided
markets with double auction, and then formulate a VM
provisioning problem.

3.1 Modeling VM Trading in Two-Sided Markets with
Double Auction
In a VM trading two-sided market, multiple cloud providers
sell their VMs, while multiple users purchase VMs for their
tasks. We assume that there are N users and M providers
in the market. Since predefined VM types are beneficial
to improve the utilization of resources, and popular cloud
platforms [1], [2] adopt this resource encapsulation manner,
we also treat VMs as resource units. Each cloud provider has

K types of VMs. Users are encouraged to choose multiple
types of VMs to finish their tasks under different pricing
models because of higher cost-efficiency [15]. To incentivize
users and providers participating in VM trading of the two-
sided market, a double auction-based pricing model can be
adopted.

Fig. 2 shows the workflow of the VM trading in a two-
sided market with double auction. First, both users and
providers submit their buy-bids and sell-bids to an auc-
tioneer respectively. Then the auctioneer matches winners of
users and providers based on these bids through a matching
process. Next, the auctioneer informs users and providers
of matching results, and requests payments from users as
well as resources from providers. After that, users and
providers submit payment and resources to the auctioneer
respectively. Finally, the auctioneer allocates resources to
users and completes payment to providers.

Under the double auction framework, We first describe
bids of users and providers, and the actual price and actual
amount of resources determined by the auctioneer.

Users (Buyers): A buy-bid for a user i is denoted as
b(i) =< λ(i), c(i) >, where λ(i) is the task requirement of
user i, while c(i) is the payment for the VM provisioning
decision in a unit time. Users buy VMs from cloud to finish
one task, whose revenue denotes as R(i). Moreover, λ̃(i)

and c̃(i) are true values of the task requirement λ(i) and
the payment c(i) respectively, i.e., the task requirements of
tasks that users really intend to handle and the maximum
price that users are willing to pay. Users manipulate their
bids strategically to optimize their own profits.

Providers (Sellers): A sell-bid for a provider j is denoted
as < X

(j)
m , p

(j)
m >,∀m ∈ {1,K}, where X

(j)
m is the

maximum number of type-m VMs that the provider j is
able to sell, and p

(j)
m is the unit price of type-m VMs.

Running a type-m VM will incur an operational cost C(j)
m .

Moreover, X̃(j)
m and p̃

(j)
m are true values of the maximum

number of VMsX(j)
m and the unit price p(j)m respectively, i.e.,

the maximum amount of type-m VMs that providers really
intend to sell, and the unit price that providers are willing
to charge. Similar to users, providers manipulate their bids
strategically to optimize their own profits.

Auctioneer: To avoid the risk of unfair double auction,
we assume the auctioneer is a third-party platform. The
auctioneer executes the double auction mechanism for users
and providers, after it collects all buy-bids and sell-bids.
In the double auction, the auctioneer determines the actual
paying price ĉ(i) and actual task requirement λ̂(i) of a user i,
as well as the actual charging price p̂(j)m and actual number
X̂

(j)
m of a provider j for type-m VMs. In real world, there are

many third-party cloud integration service providers [31],
[32], [33], which integrate the cloud resources from different
cloud providers, and provide users a unified API to utilize
the resources, whose functions are similar to that of the auc-
tioneer. Therefore, the cloud integration service providers
can be seen as the auctioneer in the double auction.

After the definitions above, the utilities of buyers and
sellers under the double auction are defined as follows.

Definition 1. (Utility of Buyer): For a user i, the utility of the
user is the difference between the task revenue and payment for

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 4

the VM provisioning decision, i.e.,

w
(i)
b =

{
R(i) − ĉ(i) user i wins the buy-bid
0 otherwise.

(1)

Definition 2. (Utility of Seller): For a provider j, the utility of
the provider is the difference between the VM charging price and
operational cost of all VM types, i.e.,

w(j)
s =

K∑
m=1

w(j)
m , (2)

where

w(j)
m =

{
X̂

(j)
m p̂

(j)
m − C(j)

m provider j wins the sell-bid
0 otherwise.

Based on the definition of utilities for buyers and sellers,
the social welfare can be defined.

Definition 3. (Social Welfare): The social welfare is the sum of
the utilities of both buyers and sellers in the auction, i.e.,

wsw =

N∑
i=1

w
(i)
b +

M∑
j=1

w(j)
s . (3)

Through the description of basic notations in the double
auction above, we model the VM trading scenario in two-
sided markets, in which bid-forms of users and providers,
as well as utilities of users, providers and the social welfare
are defined.

3.2 Formulating VM Provisioning Problem
From the definition above, we can see that users’ task
requirements are in the form of service rate λ(i), while
providers’ resources are in the form of different VM types
X

(j)
m ,∀m ∈ {1, · · · ,K}. It is hard for the auctioneer to

determine the winner from users and providers based on
these bids. To bridge the difference between users’ task
requirement and providers’ resources, we formulate a VM
provisioning problem which transforming the task require-
ment in users’ bids to VM types.

For higher utilization of cloud resources, providers usu-
ally adopt non-linear pricing models to incentivize users to
purchase heterogeneous VMs [16]. Utilizing heterogeneous
VMs to finish users’ tasks, VM migrations cannot be avoid-
able [37]. Specifically, assume the old provisioning decision
is xold and new provisioning decision is xnew, whose mth

entry means the number of type-m VMs. If some types
of VMs need to be provisioned while other types of VMs
need to be removed in the new provisioning decision, i.e.,
xnew − xold 6= 0, the data from removed VMs should be
transferred to the new VMs, which leads to VM migrations.
Thus, it is necessary to balance the cost and migration delay
in the VM provisioning decision making.

We first investigate the migration mechanism in the
cloud. Usually, if a user needs to start a new VM, the old
VM first shutdowns and uploads the image to image server,
and then the new VM downloads the image from image
server and starts. Thus, the transferring delay is doubled
and the migration delay α(t) is

α(t) = 2
D(t)

Θ
+ Φ, (4)

where Φ is the VM start time, Θ is the bandwidth and D
is the image size. Φ is a constant. Since the image transfer-
ring can be distinguished into inner-cloud and inter-cloud
transferring, for the bandwidth Θ, there are two different
bandwidths accordingly, i.e., the inner-cloud bandwidth Θ1

and inter-cloud bandwidth Θ2. Θ is subject to a Bernoulli
distribution B(Θ1,Θ2, p), where p is the occurrence possi-
bilities of the inner-cloud transferring. Thus, Θ can be set as
the expected value, i.e.,

E(Θ) = Θ1p+ Θ2(1− p). (5)

For the image size D(t), it is related to VM provisioning
decisions between two constitute time slots, i.e.,

D(t) = d(t)
∑

xm(t−1)>xm(t)

|xm(t− 1)− xm(t)|, (6)

where d(t) is the average image size of one VM. Since
all images should be uploaded to the image server before
starting a new VM, the image sizeD(t) equals the volume of
old disk images. To ensure users can achieve stable perfor-
mance with our VM provisioning decision, the inter-cloud
bandwidth Θ2 is set as a constant. In real world, many cloud
providers offer minimum network bandwidth guarantees
in Service Level Agreement (SLA) [38], [39]. We utilize the
expectation of all providers’ minimum bandwidths in the
double auction as the inter-cloud bandwidth Θ2, to ensure
users can achieve good performance under any situations.

Except for the delay in migrations of VMs, there may
be migration costs while a VM is migrated from one cloud
provider to another one. But in real world, many cloud
providers offer free migration services, such as Amazon
provides the server migration service[6], which is free for
users to migrate the workload to AWS [40]. Thus, we re-
gard the migration cost as zero in the formulation of VM
provisioning problem.

In two-sided markets, users’ goal is to minimize their
provisioning costs, while constraints are to ensure that pro-
visioned VMs meet performance needs, and to control the
cumulative delay in a reasonable range. Since this VM pro-
visioning problem is under the double auction, there would
be an additional constraint, i.e., the provisioning cost should
not be larger than the cost in users’ bids. The migration
delay is considered as the main source of the cumulative
delay constraint due to the fact that the migration delay
is far larger than other kinds of delay, such as the data
transferring delay. Moreover, since the provisioning cost and
cumulative delay monotonically increase as time goes on,
we minimize time-averaged provisioning costs under the
time-averaged cumulative delay constraint. Therefore, the
problem is formulated as

min lim
T→∞

1

T

T−1∑
t=0

K∑
m=1

x(i)m (t) ρm

s.t
K∑
m=1

x
(i)
m (t)µm≥ λ(i) ∀t

lim
T→∞

1

T

T−1∑
t=0

α(t)≤ T

lim
T→∞

1

T

T−1∑
t=0

K∑
m=1

x
(i)
m (t) ρm≤ c(i)

x
(i)
m (t)∈ N ∀t,m,

(7)

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 5

where ρm is the expected unit price of type-m VMs, µm is
the maximum service rate of type-m VMs, λ(i) is the user
i’s task requirement, c(i) is the costs in user i’s bid, T is the
maximum tolerable delay, and xm(t) is the number of type-
m VMs. The number of type-m VMs xm(t) is determined
by solving optimization problem (7) in the time slot t.

4 DOUBLE AUCTION MECHANISM

In this section, we design a double auction mechanism for
two-sided markets to bridge users’ task requirements and
providers’ resources.

In a two-sided cloud market, the task requirement in
a buy-bid of a user i is λ(i), and the number of type-m
VMs in a sell-bid of a provider j is X(j)

m . We assume that
the resources from providers are always larger than that
requested by users, i.e., providers have infinite resources in
the view of users, which is consistent with reality. So, in our
work, users do not need to know the maximum resources
amount of providers. Since users need sufficient VMs to
finish their tasks while they are unwilling to pay more for
extra VMs, they have no reason to submit a task requirement
which is not their true value. Hence, in our mechanism, we
consider λ(i) in buy-bids and X

(j)
m in sell-bids are always

true values, while the payment c(i) in buy-bids and unit
price p(j)m in sell-bids are strategically determined by users
and providers respectively.

In the mechanism, actions conducted by the auctioneer
can be divided into two steps. The first step is that the
auctioneer determines winners from users and providers
at the beginning of each time slot, i.e., winners matching
process. The second step is that the auctioneer determines
the price and amount of resources. In the following, we
elaborate the details of these two steps accordingly.

1) Matching: Since the paying price in buy-bids and
charging price in sell-bids are different, the auctioneer can-
not find the critical price to match winners from users
and providers. Hence, the auctioneer first calculates the bid
density of each buy-bid, which is defined as

ppr(i) =
c(i)

x(i)Tµ
, (8)

where µ = (µ1, . . . , µK)T is the maximum service rate
for each type of VMs, and x(i) = (x

(i)
1 , . . . , x

(i)
K)T is the

provisioning decision of user i. The provisioning decision
x(i) can be determined with λ(i) and c(i) in user’ i’s bid
through solving the optimization problem (7), which is
described in Section 5. The bid density can be expressed as
price-performance ratio, i.e., the price per service capability.
Higher bid density means the user is willing to pay higher
price for resources. Hence, based on the bid density of buy-
bids and charging price in sell-bids, the auctioneer can find
an approximate critical price in the double auction.

For buy-bids, the auctioneer sorts all buy-bids based on
bid densities in a descending order, i.e.,

φ(1) ≥ · · · ≥ φ(i) ≥ · · · ≥ φ(N). (9)

For sell-bids, the auctioneer sorts all sell-bids for type-m
VMs based on unit price in an ascending order, i.e.,

θ(1)m ≤ · · · ≤ θ(j)m ≤ · · · ≤ θ(M)
m ,∀m ∈ {1, . . . ,K}. (10)

Algorithm 1 Double Auction Mechanism
Input: K : the number of VM types

N : the number of users
M : the number of providers
b(i) =< λ(i), c(i) >,∀i ∈ [1, N]: buy-bids of N users
s
(j)
m =< X

(j)
m , p

(j)
m >,∀j ∈ [1,M],∀m ∈ [1,K]: sell-

bids of M providers and K VM types
Output: Buyers: the winning buyers list

Sellers: the winning sellers list
Buyp: the cost of the winning buyers list
Sellp: the unit cost of the winning sellers list
Buyr : the allocated computing capabilities to the

winning buyers in Buyers
Sellr : the amount of allocated resources from the

winning sellers in Sellers
1: while Eq. (11) is satisfies do
2: obtain the VM provisioning decision x(i),∀i ∈

[1, · · · , N] through solving the optimization problem
(7), i.e., x(i) = CA-RP (λ(i), c(i), V).

3: traverse all buy-bids and sell-bids, then find the one
winning buyer and multiple winning sellers based on
Eq. (11).

4: add the winning buyer to the list Buyer, and add the
winning sellers to the list Sellers.

5: calculate the payment of the winning buyer and the
unit price of the winning sellers based on Eq. (12) and
(13) respectively, as well as the amount of allocated
resources based on Eq. (14) and (15).

6: add the payment of winning buyer and the unit
price of winning sellers to the lists Buyp and Sellp
respectively, as well as add the amount of allocated
resources to the lists Buyr and Sellr respectively.

7: remove the winning buyer and the allocated resources
of the winning sellers from the auction.

8: end while
9: return Buyers, Sellers, Buyp, Sellp, Buyr , Sellr

After both buy-bids and sell-bids are sorted, the auction-
eer judges whether there is any user or provider wins the
auction through the inequality as follows,

φ(2) · x(i
′
)Tµ ≥

K∑
m=1

x(i
′
)

m θ(j
∗)

m , (11)

where i
′

is the index of the buy-bid whose bid density is the
largest. If there exists a j = j∗ satisfying the Eq. (11), the
i
′
-th buy-bid (i.e., ppr(i

′
) = φ(1)) wins the auction as well

as all sell-bids with p(j)m ≥ θ(j
∗)

m (not include the j∗) win the
auction, i.e., sell-bids with θ(1)m , . . . , θ

(j∗−1)
m win the sell-bid.

If there are several j satisfying the Eq. (11), the largest j
is chosen as j∗. Otherwise, no one wins the auction. Here,
the second largest bid density φ(2), and the j∗th smallest
charging price θ(j

∗) are critical prices in buy-bids and sell-
bids respectively.

2) Pricing and VMs Allocation: In double auction mar-
kets, it is an NP-hard problem to determine the price [41].
Thus, we apply another pricing scheme which is similar to
second-price auction [42] based on our matching results:

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 6

• the price paid by the winning buyer is

ĉ(win) = φ(2) · x(win)Tµ; (12)

• the unit price of type-m VMs charged by the winning
seller winj is

p̂(winj)m = θ(j
∗)

m . (13)

The winning buyer is the user with the largest bid
density. To ensure that buyers bid with their true values,
the winning buyer cannot pay what it bids. Since Eq. (11)
enables the second largest bid density to satisfy the budget-
balance property, the winning buyer pays φ(2) · x(win)Tµ.
Similarly, winning sellers cannot pay what they bid. Win-
ning sellers charge with θ(j

∗) to maintain the budget-balance
property.

Moreover, the number of VMs is:

• the computing capability purchased by the winning
buyer to meet the task requirement is

λ̂(win) =

K∑
m=1

µm ·
∑

j∈{i|p(i)m =θ
(k)
m ,

k=1,...,j∗−1}

X̂(j)
m ; (14)

• the number of type-m VMs sold by the winning
seller winj is

X̂(winj)
m =

d
x
(win)
m

(j∗ − 1)
e

x
(win)
m

(j∗ − 1)
≤ X(winj)

m

X
(winj)
m otherwise.

(15)

Each winning seller allocates the same amount of re-
sources to the winning buyer. Since j∗ is determined in the
matching process, the time complexity of pricing and VMs
allocation scheme is O(1).

The matching process above chooses only one winning
buyer in the double auction, which is far from efficient.
Thus, to achieve efficiency while ensuring truthfulness, we
further perform the mechanism as Algorithm 1 shows.
Obviously, Eq. (11) cannot be satisfied when the round
of the double auction tends to infinity. We assume in the
worst case, it consumes k rounds to finish the double
auction. Thus, the time complexity of the mechanism is
O(k · (M ·K + 1)).

Overall, we present the double auction mechanism
above, which consist of winners matching process, as well
as pricing and VMs allocation scheme. Our proposed mech-
anism satisfies three economic properties of double auction.
1) Individual Rationality: both buyers and sellers obtain a
nonnegative profit by participating in the double auction. 2)
Truthfulness: both buyers and sellers cannot achieve higher
profits bidding without their true values. 3) Budget Balance:
the auctioneer would not pay for the extra surplus, i.e, the
total payment collected from buyers should be larger than
the charging price of sellers. The detailed proofs of these
properties are described in Section 6.

5 COST-AWARE RESOURCE PROVISIONING AL-
GORITHM

As mentioned in Section 4, the matching process of the
designed double auction mechanism needs to get the pro-
visioning decision x(i),∀i ∈ [1, N] for determining the bid

density of each buyer. And the provisioning decision x(i)

can be determined through solving the optimization prob-
lem (7). In this section, we propose a cost-aware resource
provisioning algorithm based on Lyapunov optimization
techniques [43] to get the provisioning decision for the
double auction mechanism.

Since there are one time-averaged objective and two
time-averaged constraints in the optimization problem (7), it
is difficult to utilize convex optimization solving techniques
to solve the problem. We first simplify the problem (7).
In the problem (7), we formulate the provisioning cost as
the product of provisioning decision and the expected unit
price of VMs. Since users cannot predict the sell prices of
providers, the expected unit price is usually different from
the paying price in the double auction, i.e., ρm 6= pm, which
further leading to the inequality between the expected cost
and actual cost in the double auction, i.e.,

lim
T→∞

1

T

T−1∑
t=0

K∑
m=1

x(i)m (t)ρm 6= ĉ(i). (16)

Thus, the third constraint of the problem (7) depends on the
property of the double auction mechanism. Since the double
auction mechanism satisfies individual rationality(which is
described in Section 6, it is not necessary to guarantee the
third constraint in the problem (7), i.e., this constraint can
be eliminated.

After the simplification, there are only one time-
averaged objective and one time-averaged constraint in the
problem (7). Thus, we can employ Lyapunov optimization
techniques to solve it.

During a time slot t, the cumulative delay increases
or decreases, which seems like a queue with arrival and
departure. Thus, we first introduce a virtual queue which is
defined as:

Q(t) =

{
max{Q(t− 1) + α(t− 1)− T , 0} t > 0

0 t = 0,
(17)

where α(t) is the cumulative delay, and T is the maximum
tolerable cumulative delay.

Theorem 1. (Queue Stability): the cumulative delay constraint
of the optimization problem (7), i.e.,

lim
T→∞

1

T

T−1∑
t=0

α(t) ≤ T , (18)

is satisfied if and only if the virtual queue is stable, i.e.,

lim
T→∞

Q(t)

T
= 0. (19)

Proof. According to Eq. (17), we have:

Q (t+ 1) ≥ Q (t) + α(t)− T . (20)

Applying Eq. (4) to Eq. (20), we sum up both sides of the
equality above over time slots t ∈ {0, T − 1}, and divide it
with T . Then Letting T →∞, and applying the initial status
of virtual queue, i.e., Q (0) = 0, we have

lim
T→∞

Q (T)

T
≥ 2

Θ
lim
T→∞

1

T

T−1∑
t=0

D (t) + Φ− T .

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 7

Then applying the cumulative delay constraint, the ne-
cessity is proved.

When the length of virtual queue is large, it means
that the cumulative delay has far exceeded the time that
user can tolerant. Since the virtual queue is stable, i.e.,
limT→∞

Q(t)
T = 0, we could get:

2

Θ
lim
T→∞

1

T

T−1∑
t=0

D (t) + Φ− T ≤ lim
T→∞

Q(T)

T
= 0.

Thus, the sufficiency is proved.
Therefore, the cumulative delay constraint is equivalent

to the stability of the virtual queue, i.e., Eq. (18) is equivalent
to Eq. (19).

According to Theorem 1, the cumulative delay constraint
in the optimization problem (7) is transformed to the stabil-
ity of the virtual queue Q(t).

Then, we formulate the stability of the virtual queue
based on the Lyapunov optimization framework. For each
time slot, the quadratic Lyapunov function is defined as

L(t) =
1

2
Q(t)2. (21)

Based on the Lyapunov function, the Lyapunov drift is
defined as the difference between backlogs of the queue in
two constitute time slots, i.e.,

∆L(t) = E{L(t+ 1)− L(t)|Q(t)}. (22)

The Lyapunov drift ∆L(t) is defined as a tool to measure
the stability of the virtual queue.

Under the framework of Lyapunov optimization tech-
niques, there is an upper bound of the Lyapunov drift.

Theorem 2. (Upper Bound of Lyapunov Drift): For any time
slot t, given any possible VM provisioning decision, the Lyapunov
drift ∆L (t) could be bounded as follows

∆L (t) ≤M +Q (t)E{2D (t)

Θ
+B|Q (t)}, (23)

where M =
1

2

(
2
Dmax

Θ
+ Φ− T

)2

, and B = Φ− T .

Proof. First, applying Lyapunov function to Lyapunov drift,
the Lyapunov drift is derived as:

∆L (t) =
1

2
E{Q2 (t+ 1)−Q2 (t) |Q (t)}. (24)

Combined with Eq. (17), max2{a, 0} ≤ a2 and B = Φ − T ,
we have

Q2 (t+ 1) ≤ Q2 (t) +

(
2
Dmax

Θ
+B

)2

+ 2Q (t)

(
2
D (t)

Θ
+B

)
,

(25)

where Dmax denotes the maximum disk image size.
Applying Eq. (25) to Eq. (24), the Lyapunov drift is

further transformed to Eq. (23).

Based on the Lyapunov optimization framework, we
take the Lyapunov drift ∆L(t) combined with a penalty
term V C(i)(t) as the objective, i.e.,

∆L(t) + V C(i)(t),

Algorithm 2 Cost-Aware Resource Provisioning Algorithm
(CA-RP)

Input: λ(i): the task requirement in user i’s bid
c(i): the provisioning cost in user i’s bid
V : the weight under Lyapunov optimization

Output: x(i): the VM provisioning decision
1: initialize several parameters, i.e.,

Θ: the network bandwidth,
Φ: the startup time of a VM,
T : the maximum tolerable cumulative delay,
ρm: the expected cost of VM type m,
µm: the maximum service rate of VM type m.

2: for t in [0, T] do
3: if t=0 then
4: Q(t) = 0
5: D(t) = d(t)

∑
|xm(t)|

6: else
7: if Q(t− 1) + α(t− 1)− T > 0 then
8: Q(t) = Q(t− 1) + α(t− 1)− T
9: else

10: Q(t) = 0
11: end if
12: D(t) = d(t)

∑
xm(t−1)>xm(t) |xm(t− 1)− xm(t)|

13: end if
14: C(i)(t) =

∑K
m=1 x

(i)
m (t) ρm

15: B = Φ− T
16: construct the one-slot Lyapunov optimization prob-

lem as Eq. (27).
17: solve the one-slot Lyapunov optimization problem

using gradient descent method, and get the VM pro-
visioning decision x(i).

18: end for
19: return x(i)

where V is the weight under the Lyapunov optimiza-
tion framework, C(i) (t) denotes the provisioning cost∑K
m=1 x

(i)
m (t) ρm for simplicity. According to Theorem 2, we

have

∆L(t) + V C(i)(t) ≤M + V C(i)(t)

+Q(t)E{2D(t)

Θ
+B|Q(t)}.

(26)

Since M is a constant, it can be eliminated from the ob-
jective. Hence, the optimization problem (7) is transformed
to

min V C(i)(t) +Q(t)

(
2
D(t)

Θ
+B

)
s.t

K∑
m=1

x
(i)
m (t)µm≥ λ(i)(t) ∀t

x
(i)
m (t)∈ N ∀t,m.

(27)

Through the analysis above, the time-averaged optimiza-
tion problem (7) is transformed to the one-slot optimization
problem (27). Users can determine their bids by solving
problem (27) to achieve their maximum profits. There is a
weight V representing a tradeoff between the cumulative
delay and provisioning cost in problem (27). By tuning V ,
users can either minimize the provisioning cost without con-
sideration of the delay, or ensure the cumulative delay does

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 8

not exceed the maximum tolerable range without pursuing
provisioning cost minimization. The cost-aware resource
provisioning algorithm is shown in Algorithm 2. Through
cost-aware resource provisioning algorithm, the matching
process of the double auction mechanism can obtain the
provisioning decision x(i) to determine the winning buyers
and winning sellers.

6 THEORETICAL ANALYSIS

In this section, we first prove that our double auction
mechanism satisfies three economic properties, and then an-
alyze the optimality of the cost-aware resource provisioning
algorithm.

6.1 Properties of Double Auction Mechanism
As mentioned in Section 4, the designed double auction
mechanism should satisfy three economic properties: 1)
Individual Rationality; 2) Truthfulness; 3) Budget Balance.
In the mechanism, since the matching as well as pricing and
VMs allocation processes in different rounds are indepen-
dent with each other, we only need to prove each property
in one round of the double auction.

Theorem 3. (Individual Rationality): No winning buyer pays
more than its buy-bid price, and no winning seller is paid less
than its sell-bid price, i.e.,

ĉ(i) ≤ c(i) & p̂(j)m ≥ p(j)m , ∀i ∈ {1, . . . , N}, (28)
j ∈ {1, . . . ,M},
m ∈ {1, . . . ,K}.

Proof. For a winner of the buy-bid: if a user i wins the buy-
bid, the bid density ppr(i) is the largest bid density among
all buy-bids. And the payment in the bid is

c(i) = ppr(i) · x(i)Tµ. (29)

Assume p̂pr
(i) is the actual bid density of the payment.

According to the matching process, we have p̂pr(i) = φ(2).
Further, the actual payment is

ĉ(i) = p̂pr
(i) · x(i)Tµ = φ(2) · x(i)Tµ. (30)

Since ppr(i) ≥ φ(2), we have c(i) ≥ ĉ(i) based on Eq. (29)
and (30).

For a winner of the sell-bid: if a provider j wins the sell-
bid of typem, p(j)m is among the lowest (j∗−1) unit prices of
all sell-bids. According to the matching process, the actual
unit price from the provider j is

p̂(j)m = θ(j
∗)

m .

Since p(j)m ≤ θ(j
∗)

m , we have p(j)m ≤ p̂(j)m .

Before we prove the second property of the mechanism,
i.e., truthfulness, we first present two related lemmas.

Lemma 1. (Monotonic winner determination): Given buy-
bids {b(1), . . . , b(N)} and sell-bids {s(1)m . . . , s

(M)
m }(∀m ∈

{1, . . . ,K}), we have
1) If a user i wins the buy-bid by bidding with b(i), then the

user i would also win by bidding with b
′
, in which the bid density

ppr
′
> ppr(i).

2) If a provider j wins the sell-bid by bidding with s(j)m , then
the provider j would also win the sell-bid by bidding with s

′

m, in
which the unit price p

′

m < p
(j)
m .

Proof. We prove the above cases respectively.
1) Since a user i wins the buy-bid with b(i) =<

λ(i), c(i) >, we know the corresponding bid density ppr(i)

is the largest one, i.e.,

ppr(i) ≥ ppr(k),∀k ∈ [1, N], k 6= i.

With ppr
′
> ppr(i), we have

ppr
′
> ppr(k),∀k ∈ [1, N], k 6= i.

Thus, if the user i proposes a buy-bid with b
′
, it can still win

the buy-bid according to our matching decision, because the
winner has the largest bid density.

2) Since a provider j wins the sell-bid with p(j)m for type-
m VM, we know that

p(j)m ≤ θ(j
∗)

m ,

where j∗ is the critical index described above. With p
′

m <

p
(j)
m , we also ensure that

p
′

m < θ(j
∗)

m ,

which means the jth provider can also win the sell-bid.
Thus, we prove the matching process satisfies the mono-

tonic property.

Lemma 2. (Bid-independent pricing): Given buy-bids
{b(1), . . . , b(N)} and sell-bids {s(1)m , . . . , s

(M)
m }(∀m ∈

{1, . . . ,K}), we have:
1) If a user i wins the buy-bid by bidding with b(i) and b

′
, the

paying price ĉ(i) is the same for both.
2) If a provider j wins the sell-bid by bidding with s(j)m and

s
′
, the unit price p̂(j)m paid to provider j is the same for both.

Proof. We prove the above cases respectively.
1) Since a user i wins the buy-bid, it is charged with φ(2) ·

x(j)Tµ. Also, we have ppr(i) ≥ φ(2) and ppr
′ ≥ φ(2). And

as long as user i wins the buy-bid, the value of the second
largest bid density φ(2) would not change. Thus, the charged
price of the user i is independent with ppr(i) and ppr

′
. Since

the bid b(i) =< λ(i), c(i) >, and Eq. (8), the charged price is
independent with b(i) and b

′
.

2) Since a provider j wins the sell-bid, the price paid
to the provider j is θ

(j∗)
m , which is the j∗th lowest sell-

bid price. According to our winner determination, we have
p
(j)
m ≤ θ

(j∗)
m and p

′ ≤ θ
(j∗)
m . As long as provider j wins the

sell-bid, p(j)m and p
′

must be ones among the 1 ∼ j∗− 1 sell-
bids. Thus, the price paid to the provider j is independent
with p(j)m and p

′
. Since the bid s(j)m =< X

(j)
m , p

(j)
m >, the price

paid to the provider j is independent with s(j)m and s
′
.

Thus, we prove the pricing process satisfies bid-
independent property.

Theorem 4. (Truthfulness): The truthfulness of an auction mech-
anism means no buyers (users) or sellers (providers) can achieve
higher profits by bidding with values other than its true values of
the buy or sell bids, i.e., if a buyer bids with c(i) 6= c̃(i), the utility

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 9

it achieves w(i)
b ≤ w̃

(i)
b ; or if a seller bids with p(j)m 6= p̃

(j)
m , the

utility it achieves w(j)
s ≤ w̃(j)

s .

Proof. We prove truthfulness from two sides.
For User: there are two cases as follows.
Case 1: if a user iwins the buy-bid with truthful bidding,

the paying price is φ(2) ·x(i)Tµ. If the user i bids untruthfully
with c(i) > c̃(i), we know that the user i still wins the bid
without any utility increase according to Lemma 1; if the
user i bids untruthfully with c(i) < c̃(i), we know that the
user i may either win the bid with no change in utility
according to Lemma 2, or lose the bid with reduction in
utility.

Case 2: if a user i loses the buy-bid with truthful bidding,
the paying price would be 0. If the user i bids untruthfully
with c(i) > c̃(i), we know that the user i may either win
the bid with a non-positive utility gain, or lose the bid with
no change in its utility; if the user i bids untruthfully with
c(i) < c̃(i), the user i still loses the bid and the paying price
is zero.

Thus, we know that users cannot achieve higher utility
by bidding untruthfully.

For Provider: there are also two cases as follows.
Case 1: if a provider j wins the sell-bid with truthful

bidding for type-m VMs, the charging price is θ(j
∗)

m . If the
provider j bid untruthfully with p

(j)
m < p̃

(j)
m , according to

Lemma 1, we know that the provider j still wins the bid
without any utility increase; if the provider j bid untruth-
fully with p

(j)
m > p̃

(j)
m , we know that the provider j may

either win the bid with no change in its utility according to
Lemma 2, or lose the bid with a reduction in its utility.

Case 2: if a provider j loses the sell-bid with truthful
bidding for type-m VMs, the charging price is 0. If the
provider j bids untruthfully with p

(j)
m < p̃

(j)
m , the provider

j may either win the bid with a non-positive utility gain
or lose the bid leading to no change in the utility; if the
provider j bids untruthfully with p(j)m > p̃

(j)
m , since the true

value p̃(j)m cannot win the sell-bid, a higher price still lose
the bid, leading to no change in the charging price and
provider’s utility.

Thus, we know that providers cannot achieve higher
utility by bidding untruthfully.

Theorem 5. (Budget Balance): For the auctioneer, the total
payment collected from users is no less than the overall price
charged by providers, i.e.,

N∑
i=1

(ĉ(i) −
M∑
j=1

K∑
m=1

p̂(j)m x(i)m) ≥ 0.

Proof. We define the paying price for buy-bids and charging
price for sell-bids based on the proposed double auction
mechanism. Then we prove the auctioneer does not pay
extra surplus for the auction.

Payment of buyers: According to the winners matching
process, only the buyer with the largest bid density wins
the buy-bid. We assume that user i wins the bid, then the
payment is

payment = φ(2) · x(i)Tµ. (31)

Overall price of sellers: According to the winners
matching process, we determine the critical index j∗ based
on Eq. (11). Thus the overall price charged by providers is

overall price =

K∑
m=1

x(i)m θ(j
∗)

m . (32)

From Eq. (31), (32) and (11), we have

N∑
i=1

(ĉ(i) −
M∑
j=1

K∑
m=1

p̂(j)m x(i)m)

=φ(2) · x(i)Tµ−
K∑
m=1

x(i)m θ(j
∗)

m ≥ 0

Therefore, the budget balance property is guaranteed.

According to Theorem 3, 4 and 5, these three eco-
nomic properties are satisfied by the proposed double auc-
tion mechanism to bridge users’ task requirements and
providers’ resources.

6.2 Optimality of Cost-Aware Resource Provisioning
Algorithm
In problem (27), there is a weight V which represents
a tradeoff between the provisioning cost and cumulative
delay. We analyze the optimality of the cost-aware resource
provisioning algorithm based on the weight V .

We assume that a user i sets a fixed V (V > 0), which
is independent with the virtual queue status, and applies
the algorithm to determine the provisioning decision. The
optimal provisioning cost in theory is defined as

C∗ =
1

T

T−1∑
t=0

C(i)(t). (33)

Based on the cumulative delay constraint in problem (7),
we have E{α(t)} ≤ T . Thus, there exists an ε leading to

E{α(t)} ≤ T − ε, (34)

where ε > 0. Taking advantages of the definition of
∆L(t), we sum up both sides of Eq. (26) over time slot
t ∈ {0, . . . , T − 1}, in which all inner terms are eliminated.
Also, we apply P ∗ to it and have

V

T

T−1∑
t=0

C(i) (t) +
L (T)− L (0)

T
≤M + V C∗ −

ε

T

T−1∑
t=0

Q (t) .

(35)
Letting T → ∞, since L(T) would not be infinity and

L(0) is a constant, we further have

L(T)− L(0)

T
= 0.

On the one hand, since V
T

∑T−1
t=0 C(i)(t) > 0 for any T ,

we let T →∞ in Eq. (35), and have

lim
T→∞

1

T

T−1∑
t=0

Q (t) ≤
M + V C∗

ε
. (36)

The left side of Eq. (36) is the time-averaged delay.
According to Eq. (36), the time-averaged cumulative delay

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 10

36 40 44 48 52 56
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Individual Profits ($)

 Our Algorithm
 Scale Out Algorithm
 Scale Up Algorithm

Fig. 3. CDF of individual profits under three different algorithms.

has a upper bound, i.e., M+V C∗
ε , which is related to the

weight V . If V → 0, the upper bound M+V C∗
ε → M

ε which
is a constant. Thus, the cumulative delay cannot exceed the
value. If V → ∞, the upper bound M+V C∗

ε → ∞, which
implies the cumulative delay tends to infinity.

On the other hand, since ε
T

∑T−1
t=0 Q(t) ≥ 0 for any T ,

from Eq. (35), we have

lim
T→∞

1

T

T−1∑
t=0

C(i) (t) ≤
M

V
+ C∗. (37)

Similar to Eq. (36), we know there is an upper bound
M
V + C∗ of the time-averaged provisioning cost. If V → 0,
the upper bound M

V + C∗ → ∞, i.e., the provisioning cost
tends to infinity. If V →∞, the upper bound M

V + C∗ → C∗,
which is the optimal value of the provisioning cost in theory.
Thus, the provisioning cost tends to the optimal value C∗.

We know that V is a weight which represents a trade-
off between the provisioning cost and cumulative delay.
When V → 0, the cumulative delay is controlled while
the provisioning cost tends to infinity. When V → ∞,
the provisioning cost tends to the optimal value while the
cumulative delay is out of control. Thus, users can tune
weight V to meet their actual needs, and achieve optimality
by using the online algorithm.

7 EXPERIMENTAL RESULTS

In this section, we conduct simulations to evaluate the
performance of the proposed double auction mechanism
and cost-aware resource provisioning algorithm.

7.1 Simulation Setup

In the simulations, we consider 5 types of VMs shown in
Table 1, whose information is from AWS EC2 [1]. The price
in Table 1 is the unit price under on-demand pricing model.
We configure the OpenStack [44] platform with 5 VM types
described in Table 1, and then get the maximum service rate
of these 5 VM types, i.e., µ, by running TPC-W [45] in each
type of VMs. We also simulate the activities of a business-
oriented transactional web server based on TPC-W as the
task requirement λ.

There are 20 cloud providers in the simulations. The
number of servers for each provider is in the range of
[500, 750]. Each server can provide [40, 20, 10, 5, 2] VMs

V=3*106

V=8*106

V=7*106

V=4*106

V=5*106

V=6*106

40 42 44 46 48 50 52 54 56
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Individual Profits ($)

46 47 48 49 50

0.2

0.3

0.4

0.5

C
D

F

Individual Profits ($)

Fig. 4. CDF of individual profits under six different weight V s.

of each type respectively. The unit price and maximum
number for an arbitrary type of VMs are different among
different cloud providers. To calculate the operational cost
for providers, we consider the cooling power consumption
and server power consumption. Since the cooling power
consumption and server power consumption are both at
1kW/h, each server consumes power at 2kW/h in total.
Combined with unit electricity prices for four geographic
locations [46], we get the operational cost for each cloud
provider.

In the simulations, there are 1,000 users participating
in the double auction. The task requirement of their tasks
is generated by TPC-W, which is very close to the task
requirement of e-commercial websites in real world [45].
The unit price that users would like to pay in their bids
is lower than unit price in Table 1. Since the unit time in
commercial cloud platforms is 1 hour, we set one time slot
the same as it.

7.2 Evaluation of Individual Profits

We compare the performance of our algorithm with two
baseline algorithms, i.e., the scale-out and greedy scale-up
algorithms. The scale-out algorithm [47] is the most popular
algorithm in practice, in which a user first determines the
type and number of VMs as needed, and then decides the
payment in bids based on the type and number of VMs. For
greedy scale-up algorithm [48], a user chooses to provision a
more powerful VM firstly instead of increase the number
of VMs. If the most powerful VM still cannot meet the
user’s needs, the user increases the number of VMs. In these
two algorithms, the expected unit cost ρm of an arbitrary
type-m VMs is set the same as that in our algorithm. We
also implement an offline optimum mechanism for the double
auction, which aims to maximize the social welfare and is
not truthful.

TABLE 1
VM Configurations and Prices in AWS

VM type Configurations Price/h
m4.large 2 vCPUs, 6.5 ECU, 8G RAM $0.979

m4.xlarge 4 vCPUs, 13 ECU, 16G RAM $1.226
m4.2xlarge 8 vCPUs, 26 ECU, 32G RAM $2.553
m4.4xlarge 16 vCPUs, 53.5 ECU, 64G RAM $5.057
m4.10xlarge 40 vCPUs, 124.5 ECU, 160G RAM $12.838

Selected Region Asia Pacific (Singapore)
OS Windows with SQL Standard

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 11

3 4 5 6 7 8
Values of V

0

10

20

30

40

50

60

70

80

So
ci

al
 W

el
fa

re
 ($

)

PM Alg. & Proposed Mechanism

PM Alg. & Optimum Mechanism

SO Alg. & Proposed Mechanism

SO Alg. & Optimum Mechanism

SU Alg. & Proposed Mechanism

SU Alg. & Optimum Mechanism

10
6

Fig. 5. Social welfare with different weight V under different mechanism.
PM is the proposed profit maximization algorithm, SO is the scale out
algorithm, and SU is the greedy scale up algorithm.

V=3*106 V=4*106 V=5*106 V=6*106 V=7*106 V=8*106
0

2

4

6

8

10

12

14

16

18

Av
era

ge
 A

uti
on

ee
r I

nc
om

e (
$)

Algorithm

 Auc_income Max Mechanism
 Proposed Mechanism

Fig. 6. Income of the auctioneer under different algorithms with optimum
and proposed mechanisms.

Fig. 3 shows the CDF of individual profits under our al-
gorithm, scale-out and scale-up algorithms. We can see that
the individual profits under our algorithm are significantly
larger than that under two other algorithms. For 90% of
users, the individual profits under our algorithm are 12.35%
and 11.02% larger than that under scale-out and greedy
scale-up algorithms respectively. Fig. 4 shows the CDF of
individual profits under our algorithm with 6 different
weight V s. We can find that the individual profits increases
as the value of weight V increases, which is consistent with
our theoretical analysis before.

7.3 Evaluation of Social Welfare

We also compare the time-averaged social welfare of the
proposed algorithm with that of two other algorithms with
different weight V under the proposed and optimum mech-
anisms, as shown in Fig. 5. We can find that the proposed
algorithm achieves larger social welfare than two other
algorithms with an arbitrary weight V , under arbitrary
mechanism. In the worst case, the social welfare in pro-
posed algorithm is 14.92% and 14.73% larger than that in
scale-out and greedy scale-up algorithms under proposed
mechanism respectively. Also, we find that although the
social welfare under the proposed mechanism is smaller
than that under the optimum mechanism, the differences
between them are all smaller than 8%. In the worst case, the
social welfare under the proposed mechanism is only 7.01%
smaller than that under the optimum mechanism. Since the
optimum mechanism does not consider truthfulness in the

3×106 4×106 5×106 6×106 7×106 8×106
0

100

200

300

400

500

600

700

800

900

Re
sp

on
se

 T
im

e (
ms

)

Value of V

 T=150ms
 T=300ms
 T=450ms
 T=600ms
 T=750ms
 T=900ms

Fig. 7. Response time under different maximum tolerable cumulative
delay T .

3 4 5 6 7 8
43.0

43.5

44.0

44.5

45.0

45.5

46.0

In
div

idu
al

Pr
of

it (
$)

Value of V *106

Fig. 8. Individual Profits under different weight V s

double auction, the proposed mechanism can achieve both
efficiency and truthfulness.

7.4 Evaluation of Auctioneer Income
Except for the evaluations of individual profits and social
welfare, we also evaluate the auctioneer income under
the proposed mechanism and algorithm. The auctioneer
income auc income is defined as the difference between
the payments of buyers and overall prices of sellers, i.e.,
auc income =

∑N
i=1(ĉ(i) −

∑M
j=1

∑K
m=1 p̂

(j)
m x

(i)
m). We also

implement an auc income max mechanism, which aims to
maximize the income of auctioneer without considering
the truthfulness. Fig. 6 shows the time-averaged auctioneer
income of CA-RP algorithm under the proposed mechanism
and auc income max mechanism respectively. It can be
observed that under the proposed mechanism, the time-
averaged auctioneer incomes are all larger than 14 dollars,
which indicates that the proposed mechanism can help
the auctioneer achieve stable incomes. Also, the income
of auctioneer under the proposed mechanism is only 3.5%
smaller than that under the auc income max mechanism. In
Section 6, we prove that the proposed mechanism is budget-
balanced, i.e., the auctioneer income would not be negative.
This result further demonstrates that the auctioneer can
achieve a stable income from the double auction, which
motivates the double auction to run for a long term.

7.5 Impact of Maximum Tolerable Delay T
We study the relationship between the response time and
maximum tolerable cumulative delay. Maximum tolerable

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 12

3 4 5 6 7 8

Value of V

0

10

20

30

40

50

60

70

80

S
o
ci

al
 W

el
fa

re
 (

$
)

Optimum Mechanism

Proposed Mechanism

 10
6

1 2 3 4 5 6 7 8 9 10 11 12 13

Reponse Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

V=3 10
6

V=4 10
6

V=5 10
6

V=6 10
6

V=7 10
6

V=8 10
6

 10
2

300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Response Time (ms)

 1,000 users
 5,000 users
 10,000 users
 50,000 users
 100,000 users

Fig. 9. Social Welfares under different weight
V s.

Fig. 10. CDF of response time under different
weight V s.

Fig. 11. CDF of the response time with different
scales of users.

cumulative delay T constraints the time-averaged cumu-
lative delay in a reasonable range, which is mentioned in
optimization problem (7). Fig. 7 shows the impact of the
maximum tolerable cumulative delay on the response time.
From Fig. 7, we can see that for an arbitrary weight V , the
response time increases as maximum tolerable cumulative
delay T increases. The response time under T = 900ms is
at least 28.65% larger than that under T = 150ms. This is
because the cumulative delay constraint of the optimization
problem (7) relaxes as the maximum tolerable cumulative
delay T increases.

From simulation results in Fig. 7, we can find that re-
sponse time is significantly influenced by the maximum tol-
erable cumulative delay T . Since the relationship between
the response time and maximum tolerable cumulative delay
T is monotonic, T should be set as small as possible.

7.6 Impact of Weight V
We further evaluate the impact of the weight V on the
individual profits, social welfare and response time. Fig. 8
shows the relationship between the individual profits and
weight V based on Fig. 4, and Fig. 9 shows the relationship
between the social welfare and weight V based on Fig. 5. As
the value of weight V increases, the individual profits and
social welfare both increase. The individual profits under
the largest V = 8× 106 are 2.12% larger than that under the
smallest V = 3 × 106. The social welfare under the largest
V = 8 × 106 is 1.63% larger than that under the smallest
V = 3 × 106. Whether under the proposed mechanism or
the optimum mechanism, the social welfares both increase
as the weight V increases. This is because the provisioning
cost decreases as the weight V increases, leading to increase
of individual profits and social welfare, according to our
theoretical analysis in Section 6.

Fig. 10 shows the relationship between the response time
and weight V . We can see that the response time increases
as the value of the weight V increases. For 80% of users,
the response time under the largest V = 8 × 106 is 30.78%
larger than that under the smallest V = 3× 106 on average.
According to the theoretical analysis, the cumulative delay
increases as the weight V increases. Since the increase of the
cumulative delay leads to increase of the response time, the
response time increases as the weight V increases.

From simulation results in Fig. 8 and Fig. 9, we can
see that the weight V does not have significant impact

on the individual profits and social welfare. Increasing the
weight V from 3× 106 to 8× 106 only increases 2.12% and
1.63% on individual profits and social welfare respectively.
However, in Fig. 10, we find that as the weight V increases,
the response time increases significantly. For 80% of users,
increasing the weight V from 3 × 106 to 8 × 106 leads to
30.78% increasing on response time. Therefore, the weight V
should be set with a smaller value to constraint the response
time in a reasonable range.

7.7 Impact of User Scale

We conduct a further simulation to evaluate the impact of
user scale, i.e., the number of users in the double auction, on
the proposed mechanism and algorithm. In the simulation,
the task requirements are generated by TPC-W under 1,000
users, 5,000 users, 10,000 users, 50,000 users and 100,000
users respectively, and other settings are all the same as the
description in Section 7.1. Fig. 11 shows CDF of the response
time under the proposed mechanism and algorithm with
different scales of users. We can see that the response times
under different scales of users present little differences be-
tween each other. This is because the time complexity of the
proposed mechanism isO(k·(M ·K+1)), which is irrelevant
to the user scale, i.e., the number of users N . Therefore,
different number of users would not bring significant extra
computational complexity to the mechanism.

8 CONCLUSION

In this paper, we propose a truthful double auction mecha-
nism to bridge users’ task requirements and providers’ re-
sources in two-sided cloud markets. To precisely obtain the
provisioning decision for winner determination in matching
process of the mechanism, we further design a cost-aware
resource provisioning algorithm based on Lyapunov opti-
mization techniques. With theoretical analysis, we prove our
proposed mechanism is individual-rational, truthful and
budget-balanced, as well as analyze the optimality of our
algorithm. By conducting simulations, we demonstrate that
our mechanism is efficient and feasible.

ACKNOWLEDGMENTS

This research was sponsored by National Key R&D Program
of China (No. 2017YFC0803700).

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 13

REFERENCES

[1] Amazon, “Ec2 instance pricing - amazon web service (aws).”
[Online]. Available: https://aws.amazon.com/ec2/pricing/?nc1=
h ls, 2017.

[2] Microsoft, “Pricing overview - how azure pricing works — mi-
crosoft azure.” [Online]. Available: https://azure.microsoft.com/
en-us/pricing/, 2017.

[3] Scylla, “Choosing ec2 instances for nosql.” [Online].
Available: http://www.scylladb.com/2016/02/26/
best-amazon-ec2-instance-nosql/, 2016.

[4] ParkMyCloud, “How to choose between aws instance
types for cost savings.” [Online]. Available: http:
//www.parkmycloud.com/blog/how-to-choose-between-aws-
instance-types-for-cost-savings/, 2015.

[5] S. Blue, “Choosing the right aws reserved instances.” [Online].
Available: http://www.strategic-blue.com/chooseris/, 2014.

[6] TechRepublic, “How to choose the right win-
dows azure subscription.” [Online]. Available: http:
//www.techrepublic.com/blog/the-enterprise-cloud/
how-to-choose-the-right-windows-azure-subscription/, 2011.

[7] A. Hagiu and J. Wright, “Multi-sided platforms,” International
Journal of Industrial Organization, vol. 43, pp. 162–174, 2015.

[8] H. Li, C. Wu, Z. Li, and F. C. Lau, “Virtual machine trading in
a federation of clouds: Individual profit and social welfare max-
imization,” IEEE/ACM Transactions on Networking, vol. 24, no. 3,
pp. 1827–1840, 2013.

[9] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial double
auction resource allocation model in cloud computing,” Informa-
tion Sciences, vol. 357, pp. 201–216, 2014.

[10] Amazon, “Amazon ec2 spot iinstance pricing.” [Online]. Avail-
able: https://aws.amazon.com/ec2/spot/pricing/, 2017.

[11] Google, “Google computing engine pricing — compute engine
documentation — google cloud platform.” [Online]. Available:
https://cloud.google.com/compute/pricing, 2017.

[12] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang,
“How to bid the cloud,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 71–84, 2015.

[13] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir, “Deconstructing amazon ec2 spot instance pricing,”
ACM Trans. Econ. Comput., vol. 1, no. 3, pp. 16:1–16:20, 2013.

[14] B. Javadi, R. K. Thulasiramy, and R. Buyya, “Statistical modeling
of spot instance prices in public cloud environments,” in Proc.
IEEE/ACM UCC’11, 2011.

[15] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elas-
ticity provisioning system for the cloud,” in Proc. IEEE ICDCS’11,
2011.

[16] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine
provisioning based on analytical performance and qos in cloud
computing environments,” in Proc. IEEE ICPP’11, pp. 559–570,
2011.

[17] X. Yi, F. Liu, D. Niu, H. Jin, and J. C. S. Lui, “Cocoa: Dynamic
container-based group buying strategies for cloud computing,”
ACM Transactions on Modeling & Performance Evaluation of Com-
puting Systems, vol. 2, no. 2, p. 8, 2017.

[18] C. Lee, P. Wang, and D. Niyato, “A real-time group auction
system for efficient allocation of cloud internet applications,” IEEE
Transactions on Services Computing, vol. 8, pp. 251–268, March 2015.

[19] J. Wang, X. Xiao, J. Wang, K. Lu, X. Deng, and A. A. Gumaste,
“When group-buying meets cloud computing,” in Proc. IEEE
INFOCOM’16, pp. 1–9, April 2016.

[20] S. Zaman and D. Grosu, “A combinatorial auction-based mecha-
nism for dynamic vm provisioning and allocation in clouds,” IEEE
Transactions on Cloud Computing, vol. 1, no. 2, pp. 129–141, 2013.

[21] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud comput-
ing,” ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1, pp. 71–83, 2014.

[22] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. IEEE
INFOCOM’14, 2014.

[23] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 805–818, 2016.

[24] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, “Online auc-
tion for iaas clouds: towards elastic user demands and weighted
heterogeneous vms,” in Proc. IEEE INFOCOM’17, 2017.

[25] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting deadlines
of delay tolerant jobs in the cloud with dynamic pricing,” in Proc.
IEEE ICDCS’16, pp. 415–424, 2016.

[26] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect infor-
mation dynamic stackelberg game based resource allocation using
hidden markov for cloud computing,” IEEE Transactions on Services
Computing, 2016. doi: 10.1109/TSC.2016.2528246.

[27] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart
cloud storage service selection based on fuzzy logic, theory of ev-
idence and game theory,” IEEE Transactions on Computers, vol. 65,
pp. 2348–2362, Aug 2016.

[28] K. Li, C. Liu, K. Li, and A. Y. Zomaya, “A framework of price bid-
ding configurations for resource usage in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 2168–
2181, Aug 2016.

[29] X. Dong, J. Yu, Y. Luo, Y. Chen, G. Xue, and M. Li, “Achieving
secure and efficient data collaboration in cloud computing,” in
Proc. IEEE/ACM IWQoS’13, 2013.

[30] X. Dong, J. Yu, Y. Zhu, Y. Chen, Y. Luo, and M. Li, “Seco: Secure
and scalable data collaboration services in cloud computing,”
Computers & Security, vol. 50, no. Supplement C, pp. 91 – 105,
2015.

[31] Codit, “Integration cloud.” [Online]. Available: http://www.
integrationcloud.eu/, 2017.

[32] Dell, “Dell boomi.” [Online]. Available: https://boomi.com/,
2017.

[33] Talend, “Talend real-time open source big data integration soft-
ware.” [Online]. Available: https://www.talend.com/, 2017.

[34] Z. Zheng, Y. Gui, F. Wu, and G. Chen, “Star: Strategy-proof double
auctions for multi-cloud, multi-tenant bandwidth reservation,”
IEEE Transactions on Computers, vol. 64, pp. 2071–2083, July 2015.

[35] J. Murillo, B. Lpez, V. Muoz, and D. Busquets, “Fairness in recur-
rent auctions with computing markets and supply fluctuations,”
Computational Intelligence, vol. 28, no. 1, pp. 24–50, 2012.

[36] G. Baranwal and D. P. Vidyarthi, “A fair multi-attribute combi-
natorial double auction model for resource allocation in cloud
computing,” Journal of Systems and Software, vol. 108, pp. 60 – 76,
2015.

[37] L. Lu, J. Yu, Y. Zhu, S. Qian, G. Xue, and M. Li, “Cost-efficient vm
configuration algorithm in the cloud using mix scaling strategy,”
in Proc. IEEE ICC’17, 2017.

[38] Ctera, “Aws s3 infrequent access vs azure cool blob storage com-
parison.” [Online]. Available: http://www.ctera.com/company/
blog/aws-s3-ia-vs-azure-cool-blob-comparison/, 2016.

[39] Microsoft, “My personal azure faq on azure networking
slas, bandwidth, latency, performance, slb, dns, dmz,
vnet, ipv6 and much more.” [Online]. Available: https:
//blogs.msdn.microsoft.com/igorpag/2014/09/28/my-personal
-azure-faq-on-azure-networking-slas-bandwidth-latency-perfor-
mance-slb-dns-dmz-vnet-ipv6-and-much-more/, 2015.

[40] Amazon, “Aws server migration service — pricing.” [Online].
Available: https://aws.ama-zon.com/server-migration-service/
pricing/?nc1=h ls, 2017.

[41] T. Sandholm and S. Suri, “Market clearability,” in International Joint
Conference on Artificial Intelligence, pp. 1145–1151, 2001.

[42] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising
and the generalized second-price auction: Selling billions of dol-
lars worth of keywords,” American Economic Review, vol. 97, no. 1,
pp. 242–259, 2007.

[43] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[44] Rackspace Cloud Computing, “OpenStack Open Source
Cloud Computing Software.” [Online]. Available:
http://www.openstack.org/, 2017.

[45] TPC Organization, “TPC-W - Homepage.” [Online]. Available:
http://www.tpc.org/tpcw/, 2017.

[46] FERC, “Federal energy regulatory commission.” [Online]. Avail-
able: http://www.ferc.gov, 2017.

[47] S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud
computing using application-level migration,” in Proc. IEEE/ACM
UCC’12, 2012.

[48] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proc. ACM
SOCC’11, 2011.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXX 2018 14

Li Lu received the bachelor degree in Computer
Science and Technology from Xi’an Jiaotong
University, Xi’an, China, in 2015. He is currently
a Ph.D. student in Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai, China. His research interests
include cloud computing, mobile and ubiquitous
computing, cyber security and privacy.

Jiadi Yu received the Ph.D. degree in Com-
puter Science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2007. He is currently
an Associate Professor in Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, Shanghai, China. Prior to joining
Shanghai Jiao Tong University, he was a post-
doctoral fellow in the Data Analysis and Infor-
mation Security (DAISY) Laboratory at Stevens
Institute of Technology from 2009 to 2011. His
research interests include cyber security and pri-

vacy, mobile and pervasive computing, cloud computing and wireless
sensor networks. He is a member of the IEEE and the IEEE Communi-
cation Society.

Yanmin Zhu received the Ph.D. from the De-
partment of Computer Science and Engineering
at the Hong Kong University of Science and
Technology in 2007. He is currently a Professor
with the Department of Computer Science and
Engineering at Shanghai Jiao Tong University.
His research interests include wireless sensor
networks and mobile computing. Before that, he
was a Research Associate with the Department
of Computing at Imperial College London. He is
a member of the IEEE and the IEEE Communi-

cation Society.

Minglu Li is graduated from the School of Elec-
tronic Technology, University of Information En-
gineering, in 1985 and received the Ph.D. degree
in computer software from Shanghai Jiao Tong
University (SJTU) in 1996. He is a full professor
and the vice chair of the Department of Com-
puter Science and Engineering and the director
of Grid Computing Center of SJTU. Currently,
his research interests include grid computing,
services computing, and sensor networks.

