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Abstract—The advent of voice cloning has fundamentally
threatened the role of voice as a unique biometric. Many
criminal incidents have already been reported to demonstrate
its significant risks of identity forgery. Previous works explored
the risks of voice cloning in constrained settings, which require
victim speakers to either be already seen in the training
data of voice cloning models, or leak dozens of minutes
of their speech samples to adversaries. However, with the
rapid progress of voice cloning in AIGC (Artificial Intelligence
Generated Content) era, these requirements have largely been
released, leaving the exact risks of state-of-the-art (SOTA) voice
cloning techniques shrouded in a dense fog. To uncover it, this
paper conducts a large-scale study in real-world scenarios to
assess the risks of advanced voice cloning techniques. This
study involves 5 SOTA voice cloning techniques (open-source
and commercial), across 8 SOTA voice authentication systems
(open-source and real-world) and 30 human listeners, using
voice data of over 7,000 speakers (public and custom). By
experimental and theoretical analysis, this study reveals that
1) state-of-the-art voice cloning techniques pose severe threats
in spoofing voice authentication systems and human listeners;
2) demographic factors such as age and gender of victim
speakers have a subtle impact on voice cloning attacks; 3)
human listeners’ subjective opinions and background about
voice cloning play an important role in their susceptibility to
attacks; 4) advanced detection methods still fail to identify
voice cloning samples as expected.

1. Introduction

Throughout human evolution, voice has served as a
fundamental medium for individual identification. Modern
times have further witnessed voice biometrics being in-
tegrated as an access control tool in various applications
including messaging apps (e.g., WeChat [1]) and mobile
banks (e.g., JPMorgan Chase [2], HSBC [3]), or to serve
for personalized services on smart speakers (e.g., Amazon
Alexa [4], Alibaba TmallGenie [5]) and personal voice as-
sistants (e.g., Apple Siri [6], Samsung Bixby [7]). However,
the dramatic rise of voice cloning techniques that can repli-
cate a target speaker’s voice with remarkable accuracy, has
challenged the reliability of voice as a biometric identifier.
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The malicious use of these techniques has caused severe
economic damage, even interfering with human cognition.
For example, in 2019, cybercriminals used voice cloning to
deceive a CEO into transferring $243,000 to a fraudulent
account [8]; similarly, attackers authorized a $35 million
bank transfer using voice cloning in 2021 [9]. On the other
hand, cloned voices have been demonstrated to influence
elections worldwide [10]. During the 2024 U.S. elections,
robocalls featuring a cloned voice of President Biden were
sent to voters widely before the New Hampshire primary, to
mislead their voting [11].

Given the increasing number of incidents involving voice
cloning, it is essential to evaluate it for a better understand-
ing of public and countermeasures development. Previous
work examined the security of GMM-based voice authen-
tication (VA) systems using early voice conversion tools
such as Festvox [12]. Shirvanian et al. [13] quantified the
vulnerability of five mobile VA apps using this tool, and a
more recent study [14] evaluated early deep learning-based
voice cloning techniques like AutoVC [15] and SV2TTS
[16] on real-world platforms such as Azure and Alexa.

However, all these studies either evaluate voice cloning
attacks only on speakers already seen in the training set
for voice cloning models or require 5min ∼ 1h of speech
samples from victim speakers to fine-tune the models.
This situation has changed as we are ushered into the
AIGC (Artificial Intelligence Generated Content) era, when
voice cloning techniques has rapidly evolved. State-of-the-
art (SOTA) techniques, like ElevenLabs [17], VALL-E [18],
and NaturalSpeech3 [19], have allowed an adversary to
clone any victim speaker’s voice with just a single utterance
as reference. This rapid iteration of techniques leaves the
exact risks of voice cloning in the current era hidden in a
dense fog.

Toward this end, this work aims to assess the threat of
SOTA voice cloning techniques in the AIGC era quantita-
tively and provide a deeper understanding of voice cloning
attacks. To achieve the goals, we first need to answer
(RQ1) Attack performance: how effective are voice cloning
attacks in spoofing voice authentication systems and human
listeners, even when the attacker has limited capabilities?
To further understand the dynamics of these attacks and
gain deeper insights, another question arises, (RQ2) Factor
impact: how do various factors affect the success of voice
cloning attacks? Finally, in terms of the rapid progress



of voice cloning detection methods, we further investigate
(RQ3) Detection effectiveness: how well do existing cutting-
edge detection methods perform?

To answer the aforementioned questions, this paper
presents a large-scale study in real-world scenarios involv-
ing 5 SOTA voice cloning techniques (open-source and
commercial) across 8 SOTA voice authentication systems
(open-source and real-world) and 30 human listeners, using
voice data of over 7,000 speakers (public and custom). We
first assess the effectiveness of voice cloning techniques
in spoofing both VA systems and human listeners. The
results reveal that even using a single utterance of the victim
speaker as reference only, adversaries can successfully spoof
VA systems and human listeners with above 96% and 68%
rates, respectively. Real-world products like Amazon Echo
and Alibaba TmallGenie, are highly vulnerable to voice
cloning attacks, with success rates of 100%. Even more
concerning, WeChat and a national-wide bank also exhibit
significant vulnerability, with victim compromise rates of
80.56% and 45.37%, respectively. Next, we conduct an in-
depth analysis of the factors affecting the success rate of
voice cloning attacks from the perspectives of the victim
speaker, the attacker, and human listeners. We find that
females are more vulnerable to voice cloning attacks than
males with a higher attack success rate by 3.2%. And we
discover that a listener’s subjective opinion and background
related to voice cloning plays a significant role, with a
success rate difference of 11.3%. Finally, we assess state-of-
the-art detection methods designed to counter voice cloning
attacks. We find that existing passive detection methods per-
form poorly, with Equal Error Rates (EERs) exceeding 16%.
Similarly, proactive detection methods show unsatisfactory
results, with EERs above 84%, and only when cloned voices
are marked using a specified watermark tool do they achieve
near-perfect accuracy.

Our key contributions are highlighted as follows:
• We conduct a large-scale study to assess the risks of

state-of-the-art voice cloning techniques in real-world
scenarios. To the best of our knowledge, we are the
first to assess the risks of voice cloning regarding a
real-world national-wide bank.

• Our results demonstrate that even using a single utter-
ance as reference only, an attacker can spoof open-
source VA systems, closed-source VA systems and
commercial smart speakers, with over 96%, 81%, and
93% rates, respectively. For the national-wide bank,
more than 69% victim users are compromised within
three attack attempts.

• The in-depth analysis uncovers that the age and gender
of the victim speaker have subtle impact on a successful
voice cloning attack, which contrasts with previous
studies. Moreover, we find that human listeners’ subjec-
tive opinions towards voice cloning significantly affect
their susceptibility to attacks.

• Further evaluation of existing state-of-the-art detec-
tion methods reveals that both passive and proactive
methods struggle to identify cloning samples in real-
world scenarios, largely due to limited generalization

capabilities and rigid enforcement protocols.

We have reported our findings to Alibaba, WeChat,
Amazon, and the national-wide bank following standard
disclosure practices. Amazon, Alibaba, and the bank have
all acknowledged the vulnerability. The bank requested a
six-month delay in publication, while Alibaba has actively
collaborated with our group to develop countermeasures.
Note that all the experiments on human participants are
validated by the Institutional Review Board (IRB) in our
university, and all participant-related data were stored lo-
cally and deleted upon completion of the study.

2. Background and Related Work

In this section, we first introduce the current state of
voice authentication systems, voice cloning techniques, and
their detection methods, followed by a discussion on social
awareness and perception of voice cloning. Finally, we
review related work on assessing the risks of voice cloning
and discuss their limitations.

2.1. Voice Authentication

The fact that humans can identify people by voice has
inspired the emergence of Voice Authentication (VA). This
automatic technique, also known as Speaker Recognition
(SR), enables machines to recognize a speaker’s identity
from voice characteristics [20]. Due to advances in deep
learning and artificial intelligence technologies, voice au-
thentication systems have made remarkable progress in the
past few years and are becoming increasingly mature and ro-
bust [21], [22]. In real-world scenarios, voice authentication
systems have been applied across various domains, including
personalized services, digital forensics, and financial trans-
actions. Numerous commercial products have integrated
voice authentication systems, such as Apple Siri, Amazon
Alexa, HSBC’s VoiceId, and Barclays’ Voice Security.

2.2. Voice Cloning

Voice Cloning refers to the process of creating a syn-
thetic speech imitating the voice of a particular person. This
is mainly achieved by speech synthesis systems such as
Text-To-Speech (TTS) [23] and Voice Conversion (VC) [24].
TTS aims to synthesize natural and intelligible speech given
text, while VC focuses on how to convert one’s voice to
sound like that of another without changing the linguistic
content. Drawing on advancements in generative models
(e.g., VAE [25], GAN [26], Transformer [27], and Diffusion
Model [28]), state-of-the-art voice cloning techniques can
now synthesize the voice of an unseen speaker using only
a few seconds of speech. Based on that, numerous accessi-
ble online tools facilitate voice cloning for users including
Elevenlabs, Coqui, Resemble AI, Speechify, and Microsoft’s
VALL-E 1/2 [18], [29] as well as NaturalSpeech3 [19].



2.3. Cloned Voice Detection

The mainstream detection methods against cloned voices
could be classified into two categories: passive and proac-
tive detections. Passive detection methods aim to determine
whether the suspect speech is machine-generated or human
voice. Classical approaches typically build features and ex-
ploit statistical differences between synthetic and human
speech such as in pitch [30], phoneme transitions [31],
and spectral correlations [32]. More recent approaches have
incorporated explicit prosody [33], vocal [34] and perceptual
models [35]. The state-of-the-art passive detection meth-
ods are all deep learning-based end-to-end models such as
RawNet2 [36] and AASIST [37].

Another line of work is proactive detection, which aims
to actively mark the audio content to identify it once it
is released. This method has attracted considerable interest
in the context of generative models including those for
text [38], image [39], and audio/speech [40], as it pro-
vides a means to not only detect synthetic content but also
track them. Liu et al. [41] proposed an end-to-end voice
cloning detection framework based on audio watermarking.
Recently, the research group from Meta has published a
state-of-the-art proactive detection method of voice cloning,
called AudioSeal [42].

2.4. Awareness and Perception of Voice Cloning

Although detection methods for voice cloning exist,
most people still express their concerns and hold a negative
sentiment. According to a comprehensive report on voice
cloning based on a survey of 2,027 U.S. adults [43], nearly
two-thirds (63.6%) of U.S. adults are aware of the term
“voice clones”. The report also indicates that nearly half
(49.0%) of the consumers have a negative sentiment toward
voice clones, while only one-third (34.3%) of the consumers
have a positive sentiment. Although some consumers ex-
press strong interest in voice clones for purposes such as
comedy and gaming, over 90% of U.S. adults express some
concern about the potential negative impact of voice clones
on them.

While consumers express significant concern about voice
clones, they are most confident that institutions in banking,
insurance, and healthcare have already taken steps to protect
them against risks, particularly through voice authentication.
The report also notes that despite concerns that voice clones
may be harmful, consumers appear to trust that voice authen-
tication can combat the risk. However, other reports have
emerged indicating that financial institutions using voice
authentication can now be spoofed with voice cloning [44].
Therefore, it is crucial to thoroughly assess the effectiveness
of voice cloning techniques against voice authentication in
real-world scenarios.

2.5. Related Work on Assessing Voice Cloning

Early studies on voice cloning assessment mainly focus
on spoofing traditional voice authentication systems. Leon

et al. [45] revisited the security of GMM-UBM and SVM-
based voice authentication systems against an HMM-based
speech synthesizer. Kinnunen et al. [46] explored the vulner-
ability of the GMM-JFA voice authentication system using
joint density GMM-based voice conversion. Following this
work, Wu et al. [47] further evaluated both text-dependent
and text-independent voice authentication systems using the
same voice conversion method. After that, Mukhopadhyay
et al. [48], using a well-recognized voice conversion tool
Festvox [12], were the first to evaluate voice cloning for
spoofing both human perception and the then state-of-the-
art VA system, Bob Spear [49].

However, the voice cloning methods assessed in the
aforementioned works all required a re-training process,
making them inaccessible to most real-world adversaries
without a professional background. On the other hand, all
evaluated spoof targets were open-source voice authentica-
tion systems without any real-world applications. To assess
the risks of voice cloning in the real world, Shirvanian
et al. [13] quantified the breakability of five mobile voice
authentication apps using Festvox [12]. Further, Wenger et
al. [14] evaluated deep learning-based voice cloning attacks,
including AutoVC [15] and SV2TTS [16], which require
only a few minutes of the victim’s data for adaptation, on
real-world applications such as Azure, WeChat and Alexa.
However, these studies still have the following limitations:
1) The results and insights are now inapplicable due to the
outdated voice cloning methods employed ; 2) Experiments
were conducted with only tens of speakers and in limited
settings, making the assessment results less convincing; 3)
The victim speakers were already seen during the training
procedure of voice cloning, which does not accurately reflect
real-world scenarios.

Different from the aforementioned works, we revisit and
evaluate the state-of-the-art, out-of-the-box voice cloning
methods, based on one stolen utterance of an unseen speaker,
in real-world scenarios with a scale of over 7,000 speakers.
And, we further study and analyze the influencing factors in
the attack process and evaluate the state-of-the-art detection
methods against voice cloning.

3. Methodology

In this section, we first introduce our threat model and
assumptions on the adversary in this work. We then detail
the employed voice clone techniques and the evaluated spoof
targets. Finally, we describe the construction procedure of
the dataset used in our experiment.

3.1. Threat Model and Assumptions

Figure 1 shows the general three-phase pipeline of a
voice cloning attack considered in this work. In Phase I,
the adversary (Mallory) first collects one speech utterance
from the victim (Bob) through passive exposure or active
sharing. For instance, Mallory can record Bob’s utterances
during public speaking engagements like presentations or
online meetings. Alternatively, Mallory could scrape the
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Figure 1: General pipeline of a voice cloning attack.

audio actively shared by Bob on social media. In Phase
II, Mallory employs out-of-the-box voice cloning systems to
replicate Bob’s voice. Specifically, Mallory inputs the stolen
utterance along with her desired text content into the voice
clone system to produce cloned voices. Based on merely
one stolen utterance, the advanced voice cloning techniques
allow Mallory to generate voices that resemble Bob’s voice
with any desired text content. In Phase III, Mallory replays
the cloned voices to spoof voice authentication systems or
deceive human listeners, which could probably compromise
Bob’s privacy and property, such as accessing Bob’s social
media accounts, conducting transactions through Banking
Apps, or committing financial fraud.

This would be a low-cost, high-return attack, especially
with mature voice cloning tools readily accessible online.
In real-world scenarios, the adversary may have different
levels of knowledge and capability to launch such an attack.
To assess the threats posed by an attacker that anyone (even
without a professional background) could easily become, we
make stringent yet realistic assumptions about the adversary
as follows:
• Unseen victim speaker. The adversary can only use voice

cloning techniques in a zero-shot setting where the victim
speaker is unseen by the underlying models, i.e., out of
the training set of these models.

• Limited voice samples. The adversary can obtain only a
single 15s utterance from the victim, either through digital
scraping or physical recording.

• Restricted cloning operations. The adversary can only
use out-of-the-box voice cloning tools, whether open-
source models or commercial platforms, and lacks the
expertise to manually fine-tune the cloned voices, such
as adjusting pitch, tone, or accent.

Under these constrained conditions, the risks of voice
cloning attacks remain unclear. To address this gap, we con-

duct a large-scale study to assess the performance of state-
of-the-art voice cloning techniques, examine the impact of
various factors in voice cloning attacks, and evaluate the
effectiveness of existing detection methods. In the follow-
ing sections, we detail the voice cloning techniques, spoof
targets, and speaker datasets used in this study.

3.2. Voice Clone Techniques

Based on the threat model, we selected five state-of-
the-art, out-of-the-box voice cloning techniques, including
three text-to-speech techniques and two voice conversion
techniques. Each of these systems is capable of cloning
voices using a single utterance of less than 15s. Additionally,
their user-friendly interfaces make them accessible to the
public.

XTTS is a text-to-speech model built on Tortoise [50]
and supports voice cloning in different languages using as
little as a 3-s audio clip. It is one of the most popular open-
source online voice cloning tools, and in our experiments,
we directly use the API provided on GitHub1. ElevenLabs2

is a pioneering software company in the voice cloning
industry, recognized as one of the major companies behind
the ongoing AI boom [51]. Their voice cloning technology is
highly mature and people can easily access their services for
approximately $5 per 30min of audio. We registered for their
voice cloning service and generated cloned voices via their
API. VALL-E X [52] is a multilingual text-to-speech model
proposed by Microsoft as an extension of VALL-E [53].
Note that Microsoft did not release any official open-source
models, we used an unofficial open-source implementation
on GitHub3.

In addition to the aforementioned text-to-speech sys-
tems, we also considered the following voice conversion
systems. FreeVC is built on the end-to-end framework [25].
By imposing an information bottleneck to WavLM [54]
features and a spectrogram-resize-based data augmentation
method, FreeVC can improve the purity of extracted content
information and generate high-quality cloned voices. The
official implementation of FreeVC is open-source on the Co-
qui platform [55]. Although Coqui has shut down, its source
code and pretrained models remain available on GitHub1,
and we directly used their pretrained model for our ex-
periments. DDDM-VC [56] introduces decoupled denoising
diffusion models (DDDMs) into voice conversion tasks and
outperforms other publicly available voice conversion mod-
els. Specifically, they use a self-supervised representation
to disentangle the speech representation such as linguistic
information, intonation, and timbre, then apply DDDMs to
resynthesize the speech from disentangled representations.
The official implementation of this work is also open-source,
so we directly used their pretrained models on GitHub4.

1. https://github.com/coqui-ai/TTS
2. https://elevenlabs.io/voice-cloning
3. https://github.com/Plachtaa/VALL-E-X
4. https://github.com/hayeong0/DDDM-VC



3.3. Spoof Targets

As described in Section 3.1, the adversary can attempt to
spoof voice authentication systems and deceive human lis-
teners. To comprehensively assess the risks of voice cloning
in real-world scenarios, we consider both machine-based
systems and human listeners as spoof targets, as summarized
in Table 1.

Open-Source VA Systems. We selected three open-
source voice authentication systems including Ecapa SR
[22], ResNet SR [57], and Resemblyzer [58]. Ecapa SR
and ResNet SR are composed of Ecapa TDNN models
and ResNet TDNN models, respectively, achieving SOTA
performance in speaker recognition tasks. Both systems
are trained on Voxceleb 1/2 [59], [21] datasets using AM-
Softmax Loss [60]. Resemblyzer, another widely used open-
source speaker recognition system, is trained on both Vox-
celeb 1/2 and LibriSpeech using generalized end-to-end
loss [61]. In these systems, each speaker is enrolled using
approximately 30s of audio data, from which a speaker
embedding is extracted and stored. To authenticate a claimed
speaker, these systems derive the embedding of the input au-
dio and compare it to the enrolled embedding of the claimed
identity using cosine similarity. In our assessments, we use
the pre-trained Ecapa and Resnet SR systems implemented
by SpeechBrain [62] as well as the official implementation
of Resemblyzer on GitHub.

Closed Service Provider. As a corporation focusing on
intelligent speech technology, iFLYTEK creates voice au-
thentication software as well as over 10 voice-based internet
and mobile products. It has demonstrated the maturity of its
AI technology through widespread adoption across various
sectors in China. For example, in education, it supports
130 million students across 50,000 schools; in healthcare,
it has assisted in over 820 million diagnoses across 600
districts; and in finance, it serves over 200 institutions. The
enrollment and authentication procedures are the same as
for the aforementioned three open-source VA systems. In
our assessments, we directly use the voice authentication
WebAPI provided by the open platform.

Real-World Applications. We consider two represen-
tative real-world VA applications: the popular social app
WeChat and the financial mobile app of a national bank.

WeChat allows users to log in using voice authentication,
and the Bank App enables clients to make withdrawals
and transactions via the voiceprint. During enrollment in
WeChat, users are required to repeatedly read a fixed, ran-
domly generated eight-digit sequence. For login, users read
the same eight-digit sequence to pass the verification. In
contrast, the Bank App requires clients to read five randomly
generated eight-digit sequences during enrollment, but a new
randomly generated sequence during the verification stage.

Commercial Smart Speakers. Two smart speakers are
evaluated in this work, i.e., Amazon Echo and TmallGenie.
Echo and TmallGenie are popular smart speakers globally
and specifically in China, respectively. Both devices support
voice authentication, allowing users to access their contacts
and memos and make online purchases. For enrollment,
Echo requires users to read several pre-specified sentences,
while TmallGenie asks users to read a single sentence at
various physical distances from the device. We use Amazon
Echo Dot 5th Gen and TmallGenie X5 in our assessments.

Human Listeners. We recruit 30 volunteers (15 males
and 15 females) as human spoof targets for our experiments.
Specifically, we recruit volunteers on our campus forums.
They age from 18 to 30 and consist of undergraduate
students, graduate students, as well as some faculty mem-
bers. Detailed information can be found in Section 4.6.
Note that IRB approval is obtained in terms of our work
involving human participants. Participants may voluntarily
choose whether to grant authorization for our experiment.

3.4. Datasets

In our experiment, XTTS is trained on multi-dataset,
FreeVC is trained on VCTK, VALL-E X and DDDM-VC
are both trained on LibriTTS. And without transparency in
commercial services, the datasets used by ElevenLabs are
undisclosed. As mentioned in Section 3.1, in real-world
scenarios, victims are likely unseen by any voice cloning
techniques during training. To mitigate this issue, we build a
large-scale dataset comprising over 7,000 speakers from our
custom dataset and multiple public datasets that have various
recording environments and devices. Most speakers were not
used for training voice cloning techniques in our experiment
to more accurately simulate real-world scenarios. We detail
these datasets as follows:

TABLE 1: Summary of spoof targets involved in this work.

Type SubType Spoof Targets Content of Enrollment Data

Voice Authentication Systems

Open-Source VA Systems
Ecapa SR [22]

About 30s of arbitrary speeches.ResNet SR [57]
Resemblyzer [58]

Closed Service Provider iFLYTEK About 30s of arbitrary speeches.

Real-world Applications WeChat A fixed randomly generated 8-digit sequence.
A National-wide Bank Five different randomly generated 8-digit sequences.

Commercial Smart Speakers Amazon Echo Several sentences with pre-specified content.
TmallGenie A single sentence repeatedly read at various distances.

Human Listeners N/A 30 Participants N/A



MCV. Mozilla Common Voice [63] is a large, crowd-
sourced, and open-source multi-language dataset of voices.
Most voice cloning techniques in our experiment do not use
this dataset for training. We use Common Voice Corpus
16.1, which contains over 90,000 voices in English with
various accents. Specifically, we randomly selected 4,495
speakers whose audio data have been validated and contain
at least 60s of speeches per speaker.

FST. Free ST American English Corpus [64] were
recorded in a silent indoor environment using cellphones. It
has 10 speakers and each speaker has about 350 utterances.
All utterances have been validated and checked by humans.

VCTK. This CSTR VCTK Corpus [65] includes speech
data uttered by 110 English speakers with various accents.
Each speaker reads out about 400 sentences, which were
selected from a newspaper, the rainbow passage, and an
elicitation paragraph used for the speech accent archive.
Considering that two speakers have technical issues with
the audio recording, we use the data from the remaining
108 speakers.

CSNED. This CrowdSourced high-quality Nigerian En-
glish speech Dataset [66] contains transcribed high-quality
audio of Nigerian English sentences recorded by 31 volun-
teers. Each speaker contributed at least 2min of audio data
and the data set has been manually quality-checked.

CSUKIED. This CrowdSourced high-quality UK and
Ireland English Dialect speech dataset [67] contains tran-
scribed high-quality audio of English sentences recorded by
120 volunteers speaking different dialects, including Irish,
Midlands, Northern, Scottish, Southern, and Welsh English.
Each volunteer provided about 10 ∼ 15min of audio data.

LibriSpeech. The LibriSpeech corpus [68] is derived
from audiobooks that are part of the LibriVox project, and
contains 1000h of speech. It contains audio data from 2,418
speakers across training, validation, and evaluation subsets,
with each speaker contributing about 30min of audio data.

Custom. The real-world applications in our assessments
require speakers to read specific phrases, but such audio
data is missing from public datasets. To address this issue,
we built a custom dataset containing recordings from 18
volunteers, each asked to record phrases in English and
Mandarin. These phrases were designed to meet our ex-
perimental requirements, and thus allow us to evaluate real-
world applications (WeChat and Bank App) and commercial
smart speakers (TmallGenie and Amazon Echo). Detailed
information can be found in Section 4.4 and 4.5.

4. RQ1: How Effective is Voice Cloning?

In this section, we explore the research question: How
effective are the state-of-the-art voice cloning techniques?
To address this, we assume an adversary that anyone could
easily become in real-world scenarios, as described in Sec-
tion 3.1. Based on the threat model, we generate 469,844
cloned voices for 7,200 victim speakers using out-of-the-box
voice cloning techniques, each based on one stolen utterance
of the respective speaker. We then conduct 1,344,484 evalua-
tion trials to spoof voice authentication systems and deceive

human listeners, allowing us to analyze the effectiveness of
state-of-the-art voice cloning techniques.

4.1. Experimental Setup

4.1.1. Dataset. We conduct experiments on a large-scale
dataset consisting of several public datasets and our cus-
tom dataset, as described in Section 3.4. Specifically, the
dataset contains 7,182 speakers from public datasets and 18
volunteers from our custom dataset, across many accents
and various recording conditions. The voice cloning and
attack evaluation setup are detailed at the beginning of the
following sections for each spoof target. In total, we gen-
erate 469,844 cloned voices using voice cloning techniques
described in Section 3.2.

4.1.2. Running Environment. Given the scale of our
dataset, we conduct experiments on our local server with
40 Intel Xeon Silver 4210R CPU, 256 GB RAM, and
four 48 GB NVIDIA RTX A6000 GPU, running Ubuntu
hirsute 21.04. Note that extensive computation resources
are unnecessary because, in most real-world scenarios, the
adversary only needs to generate a few cloned voices.

4.1.3. Evaluation Metrics. To evaluate the effectiveness
of voice cloning techniques, we define the following two
metrics:

• Cloned Voice Attack Success Rate (ASR):

ASR =
#Successful Cloned Voices

#Total Cloned Voices
, (1)

• Victim Speaker Compromise Rate (VCRn):

VCRn =
#Successfully Attacked Victims

#Total Victim Speakers
,

s.t. #Attack Trials ≤ n, for each victim.
(2)

4.2. Open-Source VA Systems

We first evaluate the effectiveness of voice cloning at-
tacks on three open-source voice authentication (VA) sys-
tems. During the voice cloning process, a random utterance
of less than 15s is selected as the reference audio for each
victim speaker, with the desired text phrases listed in Table
16. For the two voice conversion techniques, we include
two source speakers: one female and one male. Additionally,
due to subscription constraints, cloned voices for a subset of
495 speakers were generated using ElevenLabs. In total, we
produced 435,870 cloned voice samples for 7,182 speakers,
including 10 samples per speaker using XTTS and VALL-E
X, 20 samples per speaker using FreeVC and DDDMVC,
and 10 samples per speaker for the 495 speakers using
ElevenLabs.

Results. As shown in Table 2, all open-source VA
systems demonstrate significant vulnerability to certain
voice cloning techniques. While voice conversion techniques
achieve ASRs below 50%, text-to-speech techniques per-
form considerably better, with ASRs of 91.37%, 96.59%,
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and 86.39% on Ecapa SR, ResNet SR, and Resemblyzer, re-
spectively. Figure 2 illustrates the Victim Compromise Rate
(VCR) in relation to the number of attack trials. It reveals
that text-to-speech techniques can achieve a VCR of at least
75% with just one attack trial, whereas DDDMVC requires
five attack trials on Ecapa and ResNet, or three attack trials
on Resemblyzer, to reach comparable performance levels.
After 10 attack trials, the VCRs of voice cloning techniques
exceed 96% across all three VA systems, indicating that
most individuals are highly susceptible to voice cloning
attacks.

4.3. Closed Service Provider

To further assess the effectiveness of voice cloning
attacks in real-world scenarios, we conducted experiments
on a closed-source VA system from the service provider
iFLYTEK. Due to iFLYTEK’s charging policy, we limited
our evaluation to a subset of victim speakers from our
dataset. Specifically, we included 496 speakers, comprising
all speakers from the FST, VCTK, CSNED, and CSUKIED
datasets, along with 100 speakers each from the MCV and
LibriSpeech datasets. In total, we generated 32,830 cloned
voice samples for 469 victim speakers, including 10 samples
per speaker using XTTS, VALL-E X, and ElevenLabs, and
20 samples per speaker using FreeVC and DDDMVC.

Results. As summarized in Table 2, the results indicate
that commercial VA systems are also highly vulnerable to
voice cloning attacks, with ASRs exceeding 80%. Con-
sistent with our findings on open-source systems, text-to-
speech techniques outperformed voice conversion methods,
showing an average ASR improvement of approximately
20%. Additionally, within ten attack trials, the VCRs for
all voice cloning techniques, except for FreeVC, surpassed

Smart SpeakerLaptopApps

(a) Physical Setting

(b) ATM Withdrawal (c) App Transfer

Figure 3: Assessment on real-world VA applications.

88%. These results demonstrate that the commercial VA
service provider is also vulnerable to voice cloning attacks,
further emphasizing the susceptibility of commercial VA
systems to modern voice cloning techniques.

4.4. Real-World Applications

In addition to evaluating open-source and closed-source
VA systems, we assess two real-world applications that
integrate VA systems in this section: the social app WeChat
and the financial mobile app of a real-world national bank.
Due to the lack of detailed information about these two VA
systems deployed in real-world applications, we treat them
as black-box VA systems. These evaluations are conducted
using our custom dataset, which includes utterances from
18 volunteers (eight males and ten females), aged in their
twenties to thirties, recruited through our campus forum.
All participants are well-educated Chinese students fluent
in both Mandarin and English. Before the experiment, each
participant signed an informed consent form outlining the
research purpose, procedures, and data usage. After com-
pleting a 10-minute recording session, each volunteer was
compensated with $2.5.

Setup. As described in Section 3.3, both WeChat and
the Bank App require users to read digit sequences for
enrollment and verification. In this experiment, we first

TABLE 2: Attack success rate and victim compromise rate of voice cloning techniques on open-source voice authentication
systems and closed-source service provider. The highest values across different voice cloning techniques are bolded.

Spoof Targets ASR(%) VCRn(%)

XTTS ElevenLabs VALL-E X FreeVC DDDMVC n XTTS ElevenLabs VALL-E X FreeVC DDDMVC

Ecapa SR 91.37 86.46 80.89 11.23 32.81 10 98.62 97.44 95.48 36.35 76.69
ResNet SR 96.59 87.19 79.9 11.76 38.5 10 99.36 98.08 95.22 35.29 80.82

Resemblyzer 76.85 74.18 86.39 3.91 49.97 10 94.25 93.60 96.73 13.03 86.31
iFLYTEK 77.21 81.05 67.92 27.21 41.95 10 97.44 98.51 91.90 42.43 88.27



recorded ten-digit utterances for each speaker, which were
then concatenated to form new voice samples for enrollment.
Next, we generated cloned voices for each speaker to assess
the voice authentication functionality of WeChat and the
Bank App. Since both applications require digit sequences in
Mandarin, we selected two text-to-speech techniques, XTTS
and VALL-E X, which support multilingual functionality.
For voice cloning, we employed two types of reference
utterances from victim speakers: a paragraph of text and a
sequence of digits from zero to ten. The impact of these ref-
erence types is analyzed in Section 5.2.2. For each reference
type, we generated 10 cloned samples per speaker using
two cloning techniques for the WeChat application, and 3
samples per speaker for the banking application. In total, we
produced 936 cloned voice samples for 18 speakers. Figure
3a illustrates the physical setup of the experiment, where
cloned voices were generated on a laptop and replayed
through a phone to interact with the mobile applications.

Results. In this experiment, we successfully logged into
the victim’s WeChat account and, for the Bank App, com-
pleted both a mobile transaction and an ATM withdrawal.
Table 3 presents the assessment results of XTTS and VALL-
E X on WeChat and the Bank App. The ASRs of 30.00%
on WeChat and 45.37% on the Bank App are notably lower
than those observed on open-source VA systems, indicating
that these real-world applications exhibit greater robustness
and resilience to voice cloning attacks. Interestingly, despite
being a financial application, the Bank App was more vul-
nerable to attacks than WeChat. However, the Bank App
utilizes additional multi-factor authentication, with voice
authentication being just one layer of security, providing
relatively strong overall protection for users, and we did
not consider overcoming other authentication factors in our
experiment. Moreover, WeChat permits more than ten login
attempts before blocking access, and under these conditions,
over 80% of victims were compromised. In contrast, the
Bank App enforces stricter limits on failed login attempts,
yet within just three trials, approximately 69.45% of victims
were still compromised.

Discussion. As noted in Section 2.4, consumers of-
ten trust that banking institutions provide robust security
through voice authentication. However, our experimental
results suggest that VA systems in banking environments
perform significantly worse than expected. While some in-
stitutions, such as HSBC, have suspended their Voice ID
systems, many others continue to rely on VA for authen-
tication. Our results highlight the increasing threat posed
by voice cloning attacks, especially in high-stakes environ-
ments like banking, where trust in authentication methods
is paramount.

TABLE 3: Assessment results on WeChat and Bank App.

ASR(%) VCRn(%)

XTTS VALL-E X n XTTS VALL-E X

WeChat 30.00 24.17 10 57.36 80.56
Bank App 45.37 31.48 3 69.45 66.67

Disclosure. We have reported our findings to WeChat
and the Bank Institution following standard disclosure prac-
tices. The Bank Institution has acknowledged the vul-
nerability and requested a six-month delay after multiple
meetings with our group.

4.5. Commercial Smart Speakers

In real-world scenarios, we further evaluated two com-
mercial smart speakers: Amazon Echo Dot and Alibaba
TmallGenie. This experiment was conducted using the cus-
tom dataset described in Section 4.4, which includes 18
volunteers. The physical setup is shown in Figure 3a, where
the laptop and smart speaker are placed on a table with a
distance of one meter between them.

For this experiment, we first recorded utterances con-
taining specific phrases required by Echo and TmallGenie,
as outlined in Table 15. Note that for enrollment, Echo
requires users to read out various phrases, while TmallGenie
mandates that users read the same phrase at varying dis-
tances from the device. We also assumed that the voiceprint
authentication feature was enabled on both devices. To
comprehensively evaluate the vulnerability of smart speakers
to voice cloning attacks, we propose the following attack
tasks:
• (T1) Identity Theft The attacker deceives the smart

speaker into recognizing them as the legitimate user.
• (T2) Privacy Breach: The attacker gains access to the

user’s private information by querying the smart speaker.
• (T3) Unauthorized Transaction: The attacker makes

online purchases through commands given to the smart
speaker.

Based on these tasks, we designed corresponding phrases
and generated cloned voices, as listed in Table 17. In total,
we conducted 108 attack trials for 18 speakers on Echo Dot
and TmallGenie under real-world conditions, using 3 cloned
samples per speaker for each device.

Results. As shown in Table 4, XTTS achieved a 100%
ASR in all tasks except T3 on Echo, while VALL-E X
achieved an ASR above 94% on TmallGenie but a rela-
tively lower ASR on Echo. In the Identity Theft task, we
successfully used cloned voices to deceive both Echo and
TmallGenie into recognizing the attacker as the enrolled
user. For example, when we played a cloned voice saying
“Alexa, who am I?” Echo Dot responded as it would to
the legitimate user. In the Privacy Breach task, both Echo
and TmallGenie revealed the legitimate user’s private in-
formation when queried with cloned voices. Furthermore,

TABLE 4: Attack success rate on smart speakers. T1, T2,
and T3 stand for Identity Theft, Privacy Breach, and Unau-
thorized Transaction, respectively.

ASR(%) Echo TmallGenie

T1 T2 T3 T1 T2 T3

XTTS 100 100 83.33 100 100 100
VALL-E X 77.78 55.56 38.89 100 100 94.4



in the Unauthorized Transaction task, we were able to
make Echo and TmallGenie complete online purchases and
finalize payments using cloned voices.

Disclosure. We have reported our findings to Alibaba
and Amazon following standard disclosure practices. Both
Amazon and Alibaba acknowledged the vulnerability, and
Alibaba sought more collaboration with our group to de-
velop countermeasures.

4.6. Human Listeners

In this section, we conduct an experiment to evaluate
the attack success rate of voice cloning attacks on human
listeners. As described in Section 3.3, we recruited 30 vol-
unteers (15 males and 15 females) with IRB approval from
our university. Participants were screened for hearing issues
as part of the recruitment process, and informed consent was
obtained from all volunteers.

The recruited participants, aged 18 to 30, included un-
dergraduate and graduate students, as well as faculty mem-
bers. The experiment took approximately 30min per partic-
ipant, with each compensated $5 for their time. Before the
experiment began, participants were informed that any audio
they heard could either be a genuine or cloned voice. Note
that the awareness of volunteers regarding the purpose of our
study may lead to different detection behaviors compared to
real-world scenarios, which may affects the results. For each
participant, we played 100 pairs of audio, with one being
a genuine voice and the other a cloned voice. They were
asked to answer two questions for each pair: 1) label each
played audio as either genuine or synthetic, and 2) determine
whether the two audios came from the same speaker. Based
on these responses, we defined the following metrics to
assess the effectiveness of voice cloning attacks on human
listeners:

• Attack Success Rate on naturalness and intelligibility:

ASRgenuine =
#Cloned Voices Labeled as Genuine

#Total Cloned Audio Samples
,

(3)
• Attack Success Rate on speaker similarity:

ASRsame =
#Cloned Voices Labeled As Same

#Total Cloned Audio Samples
. (4)

Results. Table 5 presents the attack success rates of
different voice cloning techniques on human listeners, eval-
uated in terms of both naturalness and speaker similarity.
The results show that ElevenLabs achieved the highest
attack success rates in both dimensions, with 68.17% for
naturalness and 67% for speaker similarity. For naturalness,
all three text-to-speech techniques achieved attack success

TABLE 5: Attack success rate on human listeners.

XTTS ElevenLabs VALL-E X FreeVC DDDMVC

ASRgenuine(%) 51.83 68.17 62.17 35.17 37.67
ASRsame(%) 61.50 67.00 56.17 56.67 43.00

rates above 50%, while the two voice conversion techniques
had lower success rates, both below 38%. In terms of
speaker similarity, all voice cloning techniques, except for
DDDMVC, achieved success rates above 56%. Additionally,
we observed an interesting trend: when volunteers were
aware that the audio could be either genuine or cloned, their
accuracy in identifying genuine voices dropped to just 69%.

Finding 1. State-of-the-art voice cloning tech-
niques pose more severe threats than reported in
previous studies, even under more constrained con-
ditions in real-world scenarios. With only a single
utterance from the victim speaker as reference and
without any fine-tuning of the voice cloning models,
an attacker can easily and successfully impersonate
any victim speaker across both open-source and
commercial VA systems, real-world applications,
and human listeners, resulting in privacy breaches
and, in more severe cases, economic losses.

5. RQ2: How Various Factors Impact Attacks?

In this section, we explore the research question: How do
various factors from the victim’s, attacker’s, and human lis-
tener’s perspective impact the success rate of voice cloning
attacks? To address this, we first comprehensively analyze
the impact of different characteristics of the victim to the
attack success rate, including their ages and genders. To
better understand voice cloning attacks, from the attacker’s
perspective, we analyze the impact of different voice cloning
techniques and various characteristics of the reference utter-
ance used in the voice cloning process, including the quality,
length, and phoneme coverage. Furthermore, to better un-
derstand the circumstances of human listeners faced with
voice cloning attacks, we analyze the attack success rate
on human listeners regarding their inborn conditions like
gender or nurture knowledge and sentiment towards voice
cloning. Note that in all our statistical analyses, significance
levels are denoted as follows: p < .05∗, p < .01∗∗, and
p < .001∗∗∗.

5.1. Victim’s Perspective

5.1.1. Impact of Victim’s Gender. A previous study [14]
reported that female victim speakers exhibited over a 20%
higher attack success rate than male victim speakers, based
on experiments involving fewer than 100 participants. In
contrast, our study expands this analysis by conducting
experiments with a significantly larger dataset, comprising
7,047 speakers, as detailed in Table 6. Note that in our
experiment, we only consider the gender as the sex assigned
at birth, and excluded data from speakers who have non-
binary identity or do not want to share gender information.

To rigorously examine the influence of victim gender
on attack success rates (ASR), we employed a linear mixed-
effects model (LMM) to account for system-level variability.
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Figure 4: Probability density distribution of attack success
rate by gender.

Specifically, gender was treated as a fixed effect, while
voice cloning techniques and voice authentication systems
were also included as fixed effects to control for their
substantial influence on ASR. Victim identity was modeled
as a random effect, allowing us to capture individual-level
variation across repeated measurements.

In the LMM specification, male was set as the reference
category. The resulting coefficient for female was β = 0.259
with a p-value of 0.475 and a 95% confidence interval of
[−0.451, 0.969]. Although this coefficient suggests that fe-
male victims had a slightly higher average ASR than males,
the difference was not statistically significant (p > 0.05). To
further illustrate this finding, we visualized the distribution
of attack success rates for male and female victims using
violin plots, as shown in Figure 4. The distributions are
nearly symmetric across genders, with only minor differ-
ences in density and spread. Based on these observations,
we conclude that gender has a negligible effect on the attack
success rate of voice cloning techniques.

5.1.2. Impact of Victim’s Age. We further examined
whether age influences the susceptibility to voice cloning
attacks. To the best of our knowledge, no existing study
has examined the attack success rate in relation to the
age of victim speakers. To address this gap, we conducted
experiments on speakers from the MCV dataset, analyzing

TABLE 6: Number of speakers by gender.

MCV FST VCTK CSNED CSUKIED LibriSpeech Total

M 3287 5 47 12 71 1250 4672
F 1073 5 61 19 49 1168 2375

TABLE 7: Estimated effects of age group on ASR using a
linear mixed-effects model (reference group: Teens).

Age Group #Speakers Coefficient p-value 95% CI

Teens 402 - - -
Twenties 1913 -3.112 0.001∗∗∗ [−4.394, −1.830]
Thirties 957 -1.145 0.116 [−2.571, 0.281]
Forties 453 -2.071 0.017∗ [−3.774, −0.368]
Fifties 309 -2.913 0.003∗∗ [−4.828, −0.998]
Sixties 191 -3.362 0.004∗∗ [−5.633, −1.092]
Seventies 70 -5.621 0.001∗∗∗ [−9.072, −2.171]

CI = Confidence Interval.
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Figure 5: Attack success rate of different voice cloning
techniques.

how the age of the victim impacts the attack success rate.
Similar to previous analysis on victim gender, we em-

ployed a linear mixed-effects model (LMM), treating ASR
as the dependent variable. The model included age group,
voice cloning techniques, and voice authentication systems
as fixed effects, and incorporated victim identity as a random
intercept to account for repeated measurements. The age
variable was treated as a categorical factor, with “teens” used
as the reference group. The modeling results are summarized
in Table 7, which reports the estimated coefficients, p-values,
and 95% confidence intervals. Compared to the reference
group, several age groups exhibited significantly lower ASR
values. Specifically, the twenties group showed a difference
of β = −3.112 (p < 0.001), while other groups such as
forties (β = −2.071, p = 0.017), fifties (β = −2.913,
p = 0.003), sixties (β = −3.362, p = 0.004), and seventies
(β = −5.621, p = 0.001) also demonstrated statistically sig-
nificant effects. The thirties group showed a non-significant
trend (β = −1.145, p = 0.116).

These results suggest that age is associated with vari-
ation in attack success rates. The overall pattern indicates
that ASR tends to decrease with increasing age across many
groups, although the effect is not strictly monotonic. To
further evaluate whether age as a factor contributes signif-
icantly to model fit, we conducted a likelihood ratio test
(LRT) comparing the full model (including age group) to a
reduced model without age. The result showed a significant
improvement in model fit (χ2(6) = 43.70, p < 0.001),
indicating that age group, as a whole, has a meaningful
effect on ASR.

Finding 2. Victim gender has no statistically sig-
nificant effect on attack success rates, in contrast
to a previous study reporting a 20% higher success
rate for female victims. Age shows a statistically
significant effect, but its practical impact is modest,
with less than 6% variation across age groups.

5.2. Attacker’s Perspective

5.2.1. Impact of Voice Cloning Technique. Figure 5
presents the attack success rate and victim compromise rate



within 10 attack trials, comparing different voice cloning
techniques across three open-source voice authentication
(VA) systems, based on the setup described in Section 4.1.
We observe that the three text-to-speech techniques consis-
tently achieve significantly higher ASR and VCR compared
to the two voice conversion techniques across all VA sys-
tems, indicating that text-to-speech systems demonstrate a
stronger capability for cloning voices. Given the ease of
use of text-to-speech systems, this may allow more non-
professional attackers to launch such attacks.

5.2.2. Impact of Reference Utterance.
Utterance Quality. Table 8 presents the results of the

attack success rate on utterances with varying levels of
quality, as measured by the Signal-to-Noise Ratio (SNR), on
the LibriSpeech dataset including 2,418 speakers. In this ex-
periment, we systematically varied only the amount of noise
added to the original reference utterances, keeping all other
conditions constant to isolate the effect of utterance quality.
A Chi-square test showed a significant difference in ASR
across SNR levels of reference utterance with p < .0001.
We observe that for utterances with extremely low SNR,
the ASR drops significantly to 3.64%. However, as the SNR
improves, the ASR increases steadily, eventually stabilizing
at around 84%. These results indicate that higher-quality
reference utterances substantially improve the likelihood of
a successful voice cloning attack while using utterances with
an SNR above 30 is sufficient to achieve a satisfactory attack
success rate.

Utterance Length. To explore the impact of utterance
length, we clipped audio segments of varying durations from
the LibriSpeech dataset, ensuring that all other experimen-
tal conditions were held constant. A Chi-square test also
showed a significant difference in ASR across the length
of reference utterance with p < .0001. As shown in
Table 8, even with a short utterance of only 5s, state-of-
the-art voice cloning techniques can achieve an ASR above
60%. As the length of the reference utterance increases,
the ASR also improves, stabilizing at 80% with utterances

TABLE 8: Attack success rate across different SNR (top)
and utterance length (bottom) used in the cloning process.
Both factors significantly affect ASR (χ2(5) = 5979.97 for
SNR; χ2(5) = 410.98 for length, p < .0001).

SNR (dB) 0 10 20 30 40 50

ASR(%) 3.64 22.08 58.06 79.94 84.66 84.62

Length (s) 5 10 15 20 25 30

ASR(%) 64.64 75.64 80.11 83.62 82.92 84.62

TABLE 9: Attack success rate and victim compromise rate
on WeChat regarding phoneme coverage.

Evaluation Metric ASR(%) VCR10(%)

Phoneme Coverage 50 100 χ2 p-value 50 100

XTTS 23.89 36.11 5.83 0.0157∗ 50.00 64.71
VALL-E X 16.67 31.67 10.25 0.0014∗∗∗ 72.22 88.89

of around 15 to 20s. These results indicate that longer
reference utterances indeed improve the attack success rate
while using utterances about 15s is sufficient to achieve a
satisfactory success rate exceeding 80%.

Phoneme Coverage. Intuitively, in the voice cloning
process, using reference utterances containing more similar
phonemes as desired content may improve attack success
rates. This indicates that attackers may improve their success
rate by using reference audio with content that closely
matches the target speech in terms of phoneme coverage. In
this experiment, we examine how phoneme coverage (i.e.,
the proportion of desired phonemes present in the reference
utterance) impacts the effectiveness of voice cloning attacks,
while keeping other conditions such as utterance quality and
background noise constant. As discussed in Section 4.4, an
attacker needs to generate a cloned voice that replicates a
sequence of digits to bypass the WeChat voice authentication
(VA) system. To this end, we used two types of reference ut-
terances: one with normal text and another consisting of ten
digits. For both types, we calculated the phoneme coverage,
with results shown in Table 9. Our results demonstrate that,
for both voice cloning techniques, higher phoneme coverage
consistently leads to a higher attack success rate and a
greater victim compromise rate. This suggests that attackers
can improve their success rate by using reference audio
whose phoneme content closely matches target speeches.

Finding 3. For voice cloning attacks, text-to-
speech techniques are generally more effective than
voice conversion techniques, and a single 15s utter-
ance with a signal-to-noise ratio similar to a quiet
office is sufficient to achieve a successful attack.
Moreover, greater phoneme coverage in the refer-
ence utterance can further enhance these attacks.

5.3. Listener’s Perspective

5.3.1. Impact of Demographic Characteristics.
Impact of Age. Hearing ability changes with age, poten-

tially influencing individuals’ ability to accurately identify
cloned voices. According to an audiology and hearing aid

TABLE 10: Attack success rate on human listeners with
95% confidence intervals by age group.

Age Group (18, 22) (23, 26) (27, 30) p-value

#Participants 8 17 5 –
ASRgenuine(%) 59.75 ± 10.60 57.41 ± 10.26 50.40 ± 15.87 0.633
ASRsame(%) 52.88 ± 9.97 51.88 ± 8.62 45.00 ± 11.34 0.867

TABLE 11: Attack success rate on human listeners with
95% confidence intervals by gender.

Gender Male Female p-value

#Participants 15 15 -
ASRgenuine(%) 56.33 ± 10.28 57.40 ± 8.89 0.867
ASRsame(%) 52.87 ± 10.70 49.13 ± 5.93 0.518
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Figure 6: Attack success rate on human listeners regarding
their confidence.

center [69], hearing acuity peaks at around 18 years of
age, remains optimal through the early 20s, and typically
declines after approximately 25 years of age. Based on
this, we hypothesize that younger listeners (aged between
18 and 22 years) would exhibit higher resistance to voice
cloning attacks due to superior hearing acuity, whereas older
listeners (aged between 27 and 30 years) might demon-
strate increased vulnerability as hearing acuity diminishes.
Table 10 summarizes our experimental results. The ASR
indeed declines with increasing age, dropping from approx-
imately 60% among listeners aged 18 to 22 years to around
50% among those aged 27 to 30 years. However, a one-
way ANOVA test yielded non-significant p-values (0.633
for ASRgenuine, 0.645 for ASRsame), indicating that the
overall effect of age on vulnerability to voice cloning is
subtle.

Impact of Gender. Table 11 shows the average attack
success rates for male and female listeners. The results indi-
cate comparable susceptibility levels between genders, with
differences of approximately 1% in ASRgenuine and around
3.7% in ASRsame. Further statistical analysis using inde-
pendent t-tests produced p-values of 0.867 for ASRgenuine

and 0.518 for ASRsame confirming that gender differences
do not have statistically significant impacts on human vul-
nerability to voice cloning attacks.

5.3.2. Impact of Perceptual Factors.
Impact of Subjective Opinions and Background. In

addition to inherent factors such as age and gender, we
also investigate how non-inherent factors influence the attack
success rate. Before conducting the human listening experi-
ment in Section 4.6, participants were asked a series of ques-
tions regarding their background: whether they had a com-

puter science background, prior experience with AI-related
tools, familiarity with the concept of voice cloning, and
whether they held negative attitudes toward voice cloning
technology. Based on their responses, we categorized par-
ticipants and compared the average attack success rate, as
shown in Table 12. Interestingly, the attack success rate
among participants without a computer science background
was lower than those with such a background, which con-
tradicts our initial expectations. Furthermore, individuals
who had previously used AIGC tools were found to be
more susceptible to voice cloning attacks, with an increased
success rate of 6.25%. Regarding the naturalness of cloned
voices, participants familiar with the voice cloning concept
exhibited a lower attack success rate. However, when it came
to speaker similarity, the attack success rate was paradox-
ically higher among these individuals. This suggests that
while familiarity with voice cloning may enhance the ability
to differentiate cloned voices from authentic ones, it does not
necessarily aid in identifying the original speaker. Moreover,
we found that participants with a negative attitude toward
voice cloning technology demonstrated a significantly lower
attack success rate when evaluating naturalness, showing
a decrease of more than 11% compared to those with a
positive attitude.

Impact of Identification Confidence. After the human
listening experiment, participants were asked to rate their
confidence in their identification results. As shown in Fig-
ure 6a, higher average confidence levels were generally
associated with lower attack success rates in naturalness
evaluations, indicating greater accuracy. In contrast, for
speaker similarity, the attack success rate increased with
confidence, suggesting that higher confidence in this context
was linked to lower identification accuracy. These findings
suggest that while greater confidence may enhance the de-
tection of unnatural speech, it does not necessarily improve
recognition of the original speaker.

Finding 4. Differences across genders and ages
of human listeners have a subtle impact on their
susceptibility to voice cloning attacks. In contrast,
factors such as individuals’ subjective opinions and
their level of caution towards voice cloning appear
to play a more significant role. Furthermore, human
listeners who are more confident in the accuracy of
their identifications on cloned voice samples tend
to be more accurate when assessing the naturalness
of the samples, but relatively less accurate when
evaluating speaker similarity.

TABLE 12: Attack success rate on human listeners regarding subject opinions and background. VC stands for Voice Clone.

Criteria Comp. Science Background AIGC Tools Usage Familiar with VC Concept Negative Attitude Toward VC

Yes No ∆ Yes No ∆ Yes No ∆ Yes No ∆

#Participants 16 14 - 24 6 - 14 16 - 20 10 -
ASRgenuine(%) 60.00 53.29 6.71 56.75 57.33 0.58 55.21 58.31 3.10 53.10 64.40 11.3

ASRsame(%) 53.56 48.07 5.49 52.25 46.00 6.25 54.14 48.25 5.89 50.90 51.20 0.30



6. RQ3: How Do Detection Methods Perform?

In this section, we address the research question:
How do existing detection methods perform when chal-
lenged by state-of-the-art voice cloning techniques? Specif-
ically, we evaluate several cutting-edge detection meth-
ods: two passive approaches (AASIST [37] and SSL-AS
[70]), and a proactive approach, AudioSeal [42]. Pas-
sive approaches aim to determine whether suspect speech
is machine-generated, while proactive approaches actively
mark machine-generated content to enable identification
once it is released. AASIST achieved the best performance
with an equal error rate (EER) of 1.13% on ASVSpoof
2019 dataset, while SSL-AS demonstrated a state-of-the-art
performance with an EER of 2.85% on ASVSpoof 2021
Deepfake database. Also, Meta’s AudioSeal achieves the
best results in proactive voice cloning detection through
localized watermarking. Using the available open-source
implementations, we apply these methods to assess all
the cloned voices described in Section 4.1. In total, we
conducted over two million trials across more than 7,000
speakers.

6.1. Passive Detection

To assess the effectiveness of two passive detection
methods, we directly applied the pre-trained detector to
our generated cloned voices along with their corresponding
source audios. For each audio sample, both AASIST and
SSL-AS output a score representing the probability that
the sample is a cloned voice. Based on these scores, we
computed the equal error rate (EER).

Results. As shown in Table 13, AASIST achieves
poor performance with an EER of 46.14%, while SSL-AS
achieves an average EER of 16.24%, which represents a
significant performance decline compared to results reported
on the ASVSpoof 2019 and 2021 database. This drop in per-
formance highlights the limitations of passive detection ap-
proaches, primarily due to the poor generalization capability
of existing methods [71]. Although SSL-AS incorporates a
self-supervised wav2vec model [72] and data augmentation
to enhance generalization across both unseen speakers and
generation algorithms outside the training set, our results
suggest that achieving reliable and robust detection per-
formance for real-world applications remains a significant
challenge.

6.2. Proactive Detection

To proactively detect cloned voices using watermarks,
AudioSeal utilizes two primary modules: a generator and a

TABLE 13: Results of passive detection methods.

EER(%) XTTS ElevenLabs VALL-E X FreeVC DDDMVC Average

AASIST 31.80 53.60 52.28 58.41 37.86 46.14
SSL-AS 13.35 25.70 20.28 24.89 4.40 16.24

detector. The generator embeds a watermark into an input
audio sample, while the detector identifies whether an audio
sample has been watermarked. In real-world scenarios, at-
tackers might use voice cloning tools protected by different
watermark generators or even tools without watermark pro-
tection. To simulate this, we conducted experiments under
three conditions: cloned voices protected by 1) NOMark:
no watermark, 2) ASMark: the AudioSeal watermark gener-
ator, and 3) WMMark: a mismatched watermark generator
(WavMark [73]). During the detection phase, the AudioSeal
detector evaluated these altered voices, outputting scores
indicating the probability that each audio sample was water-
marked. We then calculated the EER based on these scores.

Results. As shown in Table 14, AudioSeal consistently
failed to identify cloned voices when they were unwater-
marked, yielding an average EER of 84.49%. In contrast,
AudioSeal performed nearly perfectly, achieving an EER
below 0.001%, when cloned voices were protected by the
designated generator. However, when protected by other
watermark generators, AudioSeal’s performance dropped
sharply once more, with an average EER of 86.21%. These
results demonstrate that the proactive detection method
yields excellent performance only when strict compliance
with watermarking protocols is enforced, while detection
effectiveness remains limited without such restrictions.

Finding 5. Existing methods still struggle with
detecting voice cloning samples in real-world sce-
narios. In particular, passive detection methods are
prone to missed and false detections due to limited
generalization capabilities, while proactive methods
perform poorly because they rely on enforcing wa-
termarking protocols for online tools.

7. Discussion

In this section, we discuss threat scenarios enabled by
voice cloning, implications for defense and authentication
services, and key challenges in detecting cloned voices.

Abuse Scenarios. Our findings demonstrate that mod-
ern voice cloning techniques pose realistic and immediate
threats across a range of misuse scenarios. In addition to
bypassing voice-based authentication systems, cloned voices
may be exploited in social engineering attacks, including
impersonation of family members or supervisors in fraudu-
lent calls, manipulation of public opinion through fabricated
statements attributed to celebrities or politicians, and unau-
thorized activation of voice-controlled systems such as smart
assistants. The widespread availability of high-fidelity voice

TABLE 14: Results of proactive detection methods.

EER(%) XTTS ElevenLabs VALL-E X FreeVC DDDMVC Average

NOMark 76.94 82.70 77.51 87.62 87.48 84.49
ASMark 0.0 0.0 0.0 0.0 0.0 0.0

WMMark 77.27 86.70 82.27 89.04 87.76 86.21



cloning tools significantly lowers the barrier for executing
such attacks.

Defense Implications. Our results show that even a
single short utterance is sufficient for adversaries to gen-
erate convincing voice clones. Individuals are therefore
encouraged to limit the public sharing of voice samples,
including those found in social media content, podcasts,
or video recordings. Notably, even low-quality audio may
be exploitable after enhancement using denoising or source
separation techniques. While fully preventing voice expo-
sure is challenging, service providers should avoid relying
solely on voice biometrics. Instead, voice-based authenti-
cation should be paired with multi-factor authentication or
supplementary behavioral verification to ensure security in
sensitive applications.

Detection Challenges. Although we evaluated both pas-
sive and proactive detection techniques, reliably identifying
cloned voices in the wild remains an open research chal-
lenge. Existing methods either fail to generalize to unseen
conditions or require strict adherence to generation proto-
cols. Future research should focus on developing detection
systems that are robust, adaptable, and feasible for real-
world deployment.

8. Limitations

While this study offers a comprehensive assessment of
voice cloning risks, it has several limitations that warrant
further attention.

Controlled Reference Conditions. Our experiments
on real-world custom datasets relied on relatively clean
reference samples recorded under controlled conditions. In
practice, adversaries may obtain voice data from less ideal
sources such as social media or phone conversations, where
background noise, compression artifacts, and spontaneous
speech patterns may reduce the effectiveness of cloning
attacks.

Informed Human Evaluation. Our human evaluation
was conducted in quiet environments, and participants were
informed that their task was to identify cloned voices. This
awareness may have introduced bias and does not fully
reflect real-world situations where listeners are typically
unaware of the presence of synthetic audio.

Partial Authentication Modeling. Our analysis of real-
world banking apps focused solely on the voice authentica-
tion layer. We did not evaluate other security components
such as multi-factor authentication (e.g., SMS verification),
liveness detection, or behavioral monitoring, which may
mitigate the attack success in practice.

Future Directions. Future research may expand the
evaluation to include real-world noisy speech, spontaneous
dialogue, and more diverse application contexts. In addi-
tion, further exploration of adaptive attack strategies, the
robustness of liveness detection, and the integration of
watermarking-based defenses would provide a more com-
prehensive understanding of evolving threats.

9. Conclusion

In this paper, we investigate the threats posed by current
advanced voice cloning techniques by presenting a large-
scale study and exploring several key research questions.
Our results demonstrate that with only a single utterance
of the victim speaker, an attacker can achieve a successful
attack, and existing detection methods fail to detect voice
cloning samples in real-world scenarios. The detailed anal-
ysis reveals that human subjective opinions and perceptions
of voice cloning also impact our ability to identify a cloned
voice. Our work highlights the severity of risks posed by
state-of-the-art voice cloning to everyone in the current era,
provides a further understanding of how demographic char-
acteristics and human subjective perception impact voice
cloning attacks, and emphasizes the deficiency of existing
countermeasures.
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P. Nguyen, R. Pang, I. López-Moreno, and Y. Wu, “Transfer learning
from speaker verification to multispeaker text-to-speech synthesis.”
in Proc. of MIT Press NeurIPS, Montréal, Canada, 2018, pp. 4485–
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Appendix A.
Phrases for Enrollment

For all voice authentication systems, user enrollment
is required initially. In this study, we evaluated several
real-world voice authentication systems, each with different
enrollment requirements. Below, we provide details on the
phrases used during enrollment.

Specifically, for the two smart speakers, Echo requires
the user to pronounce five fixed sentences (see Table 15),
while TmallGenie requires the user to pronounce a single
sentence from varying physical distances. For WeChat and
the bank app, both require the user to pronounce sequences
of eight digits. The difference is that during the verification
stage, WeChat uses the same digit sequence as in enrollment,
while the bank app randomly generates new digit sequences
for enhanced security.

TABLE 15: Phrases for enrollment.

Phrases Used for Echo Dot.

Alexa
Alexa, What’s the temperature outside?

Alexa, play music
Alexa, turn off the light

Alexa, add milk to my shopping list

Phrases Used for TmallGenie.

Tian mao jing ling.

Phrases Used for WeChat/Bank.

Sequences of eight digits.

Appendix B.
Phrases for Voice Cloning

To simulate attacks on various real-world voice authenti-
cation systems, we designed different malicious phrases for
voice cloning. For attacks on open-source and real-world
voice authentication systems in Sections 4.2 and 4.3, we
use the phrases presented in Table 16, which cover multiple
possible real-world attack scenarios.

For the two smart speakers, we developed specific
phrases for different attack tasks, as described in Section
4.5, to simulate three types of attacks: Identity Theft, Privacy
Breach, and Unauthorized Transaction (see Table 17).



Appendix C.
Phoneme Coverage

In Section 5.2, we examine the impact of phoneme
coverage on voice cloning attacks. Phoneme coverage refers
to the proportion of desired phonemes that are present in
the reference utterance. Here, we detail the phonemes of
the two types of reference utterances used in Section 5.2.2
(see Table 18) and explain how we calculated phoneme
coverage. Since the target voice samples in this experiment
are all 8-digit sequences, the phoneme coverage of the digits
reference is 100%. For the text reference utterance, 8 out of
the 16 phonemes match those in a typical 10-digit sequence.
Therefore, for any 8-digit sequence, the phoneme coverage
for the text reference utterance is at most 50%.

Appendix D.
Detailed Results across Datasets

Here, we present the results of voice cloning attacks
using different techniques across multiple datasets and var-
ious voice authentication systems. Note that the average
attack success rate (ASR) is a weighted average calculated
as follows:

Average =
∑

D∈Datasets

WD ∗ASRD

where WD represents the proportion of speakers from
dataset D relative to the total number of speakers, and
ASRD is the attack success rate for dataset D. The calcula-
tion procedure for VCR (Victim Compromise Rate) follows
a similar approach.

TABLE 16: Desired phrases targeting on open-source and
real-world voice authentication systems.

Phrases Used for Voice Cloning

Open the door and turn on the light.

Activate the access control system.

Transfer ten thousands dollars to Bob.

Confirm that the recipient of the transfer is Bob.

This is Alice, confirm the transaction.

Play my recently recorded voice memos.

Display all the family contacts in my address book.

Please provide me with
the location history of my phone for the past week.

I am Barack Obama,
and I am running for this year’s election.

I am Donald Trump, and I am
preparing to propose a new immigration policy.

TABLE 17: Desired phrases used for smart speakers. T1,
T2, and T3 stands for Identity Theft, Privacy Breach, and
Unauthorized Transaction, respectively.

Task Phrases Used for Echo Dot.

T1 Alexa, who am I?
T2 Alexa, what is my latest event?

T3 Alexa, add a pen to my cart.
Buy it now.

Task Phrases Used for TmallGenie.

T1 Tianmao Jingling, wo shi shui?
T2 Tianmao Jingling, zui xin kuai di xiao xi.

T3 Tianmao Jingling, wo yao mai niu nai.
Xia dan bing zhi fu.

TABLE 18: Phonemes of two types of reference utterances
(normal text and digits sequence) in Section 5.2.2.

Text
Tiānmāo Jı̄nglı́ng shı̀ Ālı̌bābā qı́xià zhı̀néng chǎnpı̌n
pı̌npái, tā kěyı̌ tōngguò Tiānmāo Jı̄nglı́ng ruǎnjiàn
liánjiē hé kòngzhı̀ nı̌ de Tiānmāo Jı̄nglı́ng xı̀liè yı̄nxiāng.

Phonemes
ian2, n, iang1, j, an3, b, q, l, r, h, i3, a1, ai2, in1, ong1,
ia4, in3, t, ch, zh, ian1, ie4, uan3, uo4, i4, e, k, sh, i2, ing1,
ian4, ing2, g, d, ao1, x, m, ie1, ong4, eng2, e2, e3, y, p

Digits lı́ng yı̄ èr sān sı̀ wǔ liù qı̄ bā jiǔ

Phonemes w, iu4, q, y, iu3, i4, b,an1, l, er4, ing2, j, u3, a1, i1, s



TABLE 19: Detailed results of different voice cloning techniques across datasets based on Ecapa SR system.

Metric ASR(%) VCR(%)

Dataset CSNED CSUKIED FST LS MCV VCTK Average CSNED CSUKIED FST LS MCV VCTK Average

XTTS 58.71 92.33 100.00 89.74 92.43 91.57 91.37 96.77 100 100 98.01 98.91 99.07 98.62
FreeVC 0.00 16.88 77.50 9.67 10.40 71.53 11.23 0 52.5 100 36.68 34.59 88.89 36.35

DDDMVC 0.32 23.79 72.00 44.06 27.55 15.56 32.81 3.23 84.17 100 83.87 73.33 66.67 76.69
ElevenLabs 61.29 99.67 100.00 79.70 81.40 88.70 86.46 93.55 100 100 95 96 99.07 97.44

vallex 32.26 80.75 100.00 82.45 80.22 85.89 80.89 58.06 96.67 100 95.94 95.36 99.07 95.48

TABLE 20: Detailed results of different voice cloning techniques across datasets based on ResNet SR system.

Metric ASR(%) VCR(%)

Dataset CSNED CSUKIED FST LS MCV VCTK Average CSNED CSUKIED FST LS MCV VCTK Average

XTTS 96.45 98.42 100.00 96.24 96.72 96.48 96.59 100 100 100 99.34 99.33 100 99.36
FreeVC 0.00 14.33 74.00 9.07 11.69 69.72 11.76 0 43.33 90 31.6 36 84.26 35.29

DDDMVC 2.74 23.79 78.00 50.41 33.37 8.06 38.50 19.35 81.67 90 85.4 79.56 46.3 80.82
ElevenLabs 88.06 99.50 100.00 79.70 83.00 82.87 87.19 96.77 100 100 98 97 97.22 98.08

vallex 49.68 85.67 95.00 78.30 80.91 74.26 79.90 74.19 97.5 100 94.54 95.66 95.37 95.22

TABLE 21: Detailed results of different voice cloning techniques across datasets based on Resemblyzer system.

Metric ASR(%) VCR(%)

Dataset CSNED CSUKIED FST LS MCV VCTK Average CSNED CSUKIED FST LS MCV VCTK Average

XTTS 19.03 57.67 17.00 77.46 78.92 20.74 76.85 58.06 85 60 95.33 95.19 54.63 94.25
FreeVC 0.16 0.25 0.00 8.07 1.71 7.73 3.91 0 0.83 0 25.64 6.38 25.93 13.03

DDDMVC 4.84 24.46 0.00 55.98 45.68 7.13 47.97 25.81 70 0 91.69 85.67 36.11 86.31
ElevenLabs 43.55 91.83 17.00 88.60 80.10 49.81 74.18 83.87 100 50 98 96 87.04 93.60

vallex 62.90 78.83 55.00 88.95 85.79 72.04 86.39 83.87 96.67 90 96.65 96.86 97.22 96.73

TABLE 22: Detailed results of different voice cloning techniques across datasets based on iFlytek voice authentication
service.

Metric ASR(%) VCR(%)

Dataset CSNED CSUKIED FST LS MCV VCTK Average CSNED CSUKIED FST LS MCV VCTK Average

XTTS 94.84 69.83 68.00 69.80 68.10 96.48 77.21 100 98.33 90 94 97 100 97.44
FreeVC 29.52 0.62 3.50 14.50 5.30 91.25 27.42 67.74 7.5 20 47 12 100 42.43

DDDMVC 53.87 25.17 19.50 58.75 49.60 36.62 41.95 93.55 78.33 70 97 92 87.96 88.27
ElevenLabs 92.58 84.00 80.00 70.80 71.60 92.78 81.05 100 100 100 95 98 100 98.51

vallex 68.20 52.81 63.00 65.18 66.01 89.38 67.92 87.1 87.5 100 90 92 99.07 91.90



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This work performs a large-scale evaluation of 5 VC
systems against 8 VA systems and human listeners, using
voice data from over 7,000 speakers. It explores their ability
to spoof identities against voice recognition systems, the
factors of the listener/victim that affect this success, and
whether detection methods can identify these spoofs. It
demonstrates that modern VC techniques can successfully
spoof both automated systems and human listeners with
high success rates, even with just one utterance. Overall,
the work finds that several commercial systems and people
are vulnerable.

E.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Independent Confirmation of Important Results with

Limited Prior Research

E.3. Reasons for Acceptance

1) The work evaluates diverse voices and accents and uses
several real-world voice cloning and authentication sys-
tems.

2) This work collects numerous public datasets, curates
a custom dataset by recruiting participants, develops
custom evaluation metrics, and provides a detailed
overview of voice cloning.

E.4. Noteworthy Concerns

1) The creators of VALL-E did not release an official
version of its implementation. However, an open-source
implementation is used in this work to demonstrate the
risks of voice cloning. The Conqui platform doesn’t
exist anymore. However, this work reflects the risk due
to FreeVC and XTTS (which are open source).

2) There is limited information about WeChat’s or the
Bank’s VA system. Since this work treats these systems
as black-box VA systems, there is limited transparency
on how these VA systems are affected by Voice Cloning
attacks.

3) This work assumes that the six datasets weren’t used
to train voice cloning techniques. Furthermore, there is
limited visibility into the datasets used in commercial
VC services.


