LipPass: Lip Reading-based User Authentication on Smartphones Leveraging Acoustic Signals

Presenter: Li Lu

Li Lu1, Jiadi Yu1, Yingying Chen2, Hongbo Liu3, Yanmin Zhu1, Yunfei Liu1, Minglu Li1

Shanghai Jiao Tong University1
Rutgers University2
Indiana University-Purdue University Indianapolis3
Increasing Security Concerns of Mobile Devices

- **Mobile Device**
 - Pervasive and common
 - Frequent storage medium for sensitive information
 - ID number, CVS code of credit cards
- **Concern about privacy leakage in mobile devices**
 - 78% users worry about losing sensitive data on their personal devices (Symantec[1])
- **User Authentication**
 - First guard for privacy on mobile devices
 - Direct and efficient
Existing Authentication Mechanisms

- **Password**
 - Most widely deployed
 - But hard to remember & vulnerable to stealing attacks

- **Biometric-based approaches**
 - Fingerprint, Face recognition, Voiceprint
 - Based on physiological characteristics
 - Vulnerable to replay attacks
 - Susceptible to ambient environments (e.g., lights & noises)

- To deal with the weakness,
 - Behavioral characteristic-based authentication
Outline

• Preliminary
• System Design
• Evaluation
• Conclusion
Motivation

- When a user speaks
 - Lip movements
 - Different users → different lip movements

- Capturing lip movements
 - Utilizing audio devices on smartphones
 - Emitting acoustic signal by the speaker, and receiving reflected signal through the microphones
 - Lip movements → Doppler effect of acoustic signals
Doppler Effect

- An object moving (at speed v) relative to acoustic signal source brings a frequency change
 - $\Delta f = \frac{v}{c} \times f_0$, where c and f_0 are speed and frequency of acoustic signals respectively
- Audio device setting
 - $f_0 = 20$kHz, sampling rate: 44.1kHz
- Time-domain \rightarrow Frequency-domain
 - 2048-point FFT
Difference in Doppler Profiles

- When speaking the same passphrase
 - Doppler profiles of different users are significantly different
 - Doppler profiles of the same user are similar
- Doppler profiles caused by lip movements → User authentication

Hello World
Outline

• Preliminary
• System Design
• Evaluation
• Conclusion
Overview

- Two Phases:
 - Register & Login
- Four Processes:
 - Passphrase Segmentation
 - Deep Learning-based Feature Extraction
 - Classifiers and Detectors Training
 - User Identification and Spoof Detection
Passphrase Segmentation

- A passphrase ➔ several words
 - There is usually a short interval between two successive words

- Speaking words vs. Intervals between words
 - Speaking ➔ significant Doppler effect caused by lip movements
 - Interval ➔ only white noises

- Threshold-based approach
Deep Learning-based Feature Extraction

- From acoustic signal episode of each word
 - Extract efficient and reliable features
- Three-layer autoencoder-based Deep Neural Network
 - Non-linear feature extraction
 - Abstract compressed representations through unsupervised manner

- 1st Layer: coarse-grained word-level
- 2nd Layer: fine-grained word-level (e.g., phoneme level)
- 3rd Layer: user-level
Classifiers and Detectors Training

- Multi-user Classifier & Spoofer Detector Training
 - SVM (Support Vector Machine) & SVDD (Support Vector Domain Description)
- Users register to the system sequentially
 - Reconstruct a classifier whenever a new user registers → significant computational complexity
 - Multiple binary classifiers training

- Assume i^{th} user registers to the system
 - Train a binary classifier through one-versus-rest manner (i.e., i^{th} user & other $i-1$ users)
 - Train a spoofer detector through SVDD (i.e., i^{th} user & spoofer)
User Identification & Spoofer Detection

- Authentication under single word
 - Binary tree-based authentication
User Identification & Spoof Detection (Con.)

- Authentication under multiple words
 - Strengthen robustness of authentication result

- An example (User₁ & User₂ register to the system):
 - A user speaks ‘Hello my phone’ to login
 - Three labels (i.e., U_1, U_2, U_1) can be obtained through the approach above
 - Calculate two confidences for two users (i.e., $conf_1 > conf_2$)
 - The user is identified as User₁
Outline

• Preliminary
• System Design
• Evaluation
• Conclusion
48 volunteers in 4 real environments respectively
- Volunteers: 24 males and 24 females, whose ages range in [18,52]
- Environments: lab (bright and quiet), station (bright but noisy), dark lab (quiet but dark), pub (dark and noisy).

10 passphrases:
- Each of them contains 1-10 words
- Each word contains >4 phonemes
Overall Performance

- Achieve over 80% accuracy in identifying registered users
- Average 90.2% accuracy in user authentication
- Average 93.1% accuracy in spoofer detection
Comparison with other Authentication System

- **Ideal environment (Lab)**
 - LipPass: 95.3% vs. Wechat: 96.1% & Alipay: 97.2% (*similar performance*)

- **Noisy environment (Station)**
 - LipPass: 92.4% vs. Wechat: 34.3%
 - (*significantly better than Wechat*)

- **Dark environment (Dark Lab)**
 - LipPass: 94.9% vs. Alipay: 32.9%
 - (*significantly better than Alipay*)

- **Worst environment (Pub)**
 - LipPass: 91.7% vs. Wechat: 21.3% & Alipay: 20.4% (*better than other two approaches*)
Response Time

- Response time = Login Time – End Speaking Time
- CDF of response time
 - 90% of volunteers are with less than 0.8s
 - Average response time: 0.64s
- LipPass is responsive
Outline

- Preliminary
- System Design
- Evaluation
- Conclusion
Conclusion

 Observation:
 * reveal the feasibility of utilizing Doppler profiles induced by lip movements for user authentication

 Contribution:
 * Propose a lip reading-based user authentication system
 * Design a deep learning-based method to abstract high-level behavioral characteristics of lip movements
 * Develop a binary tree-based authentication approach to identify each individual

 Evaluation: evaluate performances of LipPass in four real environments
 * Achieve 90.2% accuracy in user authentication
 * Achieve 93.1% accuracy in spoofer detection
Thank you!

Q & A