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Abstract—Voice has become a fundamental method for human-
computer interactions and person identification these days.
Benefit from the rapid development of deep learning, speaker
recognition exploiting voice biometrics has achieved great success
in various applications. However, the shadow of adversarial
example attacks on deep neural network-based speaker recog-
nition recently raised extensive public concerns and enormous
research interests. Although existing studies propose to generate
adversarial examples by iterative optimization to deceive speaker
recognition, these methods require multiple iterations to con-
struct specific perturbations for a single voice, which is input-
specific, time-consuming, and non-transferable, hindering the
deployment and application for non-professional adversaries. In
this paper, we propose PhoneyTalker, an out-of-the-box toolkit for
any adversary to generate universal and transferable adversarial
examples with low complexity, releasing the requirement for pro-
fessional background and specialized equipment. PhoneyTalker
decomposes an arbitrary voice into phone combinations and gen-
erates phone-level perturbations using a generative model, which
are reusable for voices from different persons with various texts.
Experiments on mainstream speaker recognition systems with
large-scale corpus show that PhoneyTalker outperforms state-of-
the-art methods with overall attack success rates of 99.9% and
84.0% under white-box and black-box settings respectively.

Index Terms—Adversarial example attack, universal adversar-
ial perturbation, generative model, speaker recognition

I. INTRODUCTION

As the most natural human communication method using
one of the most sensitive channels (i.e., the hearing), the voice
plays an important role in not only human interactions, but
also person identification, since antiquity. And in the era of
human-computer interactions, the voice becomes a prevalent
biometric for automatic speaker recognition gradually, owing
to the strengths of non-contact, user-friendly and continuous
authentication [1]–[3]. Meanwhile, speaker recognition ben-
efits from the rapid progress of deep learning techniques,
bringing out various mature products (e.g., voice assistant,
voiceprint lock, etc.) to intelligentize people’s lives and work.
A report [4] showing the global voice biometric market size
reached $1.1 billion in 2020 and is expected to approach $3.9
billion by 2026, also supports its rising trend in deployment
and application. However, behind the bright future of speaker
recognition, the shadow of deep learning’s vulnerability to
adversarial example attacks is becoming a severe threat grad-
ually. Recent studies [5]–[7] proved that deep neural network-
based speaker recognition could be spoofed by imposing subtle

perturbations on benign voices, i.e., suffering from adversarial
example-based impersonation attacks, which raises extensive
public concerns and enormous research interests.

Early studies [5], [8], [9] investigate the vulnerability of
speaker recognition under classical white-box adversarial ex-
ample attacks (e.g., FGSM [10], PGD [11], C&W [12]). To
overcome the impracticality of the white-box setting, the fol-
lowing works [13], [14] exploit the generalization of adversar-
ial examples to transfer the attack from a local substitute model
to the target model. But such methods suffer from performance
degradation due to the weak generalization of adversarial
examples. To improve the performance of black-box attacks,
FakeBob [15] proposes to employ the query scores as the
basis for gradient estimation, and combine it with the natural
evolution strategy for perturbation calibration. Recent studies
[16]–[19] even investigate to construct universal adversarial
perturbations that can be applied to any voice, releasing the
efforts of repetitive adversarial example generation. Although
the aforementioned studies have demonstrated the feasibility
of spoofing speaker recognition by adversarial example at-
tacks, they are either input-specific, non-transferable, or time-
consuming. Such problems are only partially alleviated in
some works without a comprehensive solution. Moreover, pre-
vious methods put forward high requirements on the attacker’s
capability, thereby causing a limited impact in practice.

Toward this end, our work aims to propose an out-of-the-box
toolkit for adversarial example attacks on speaker recognition,
which enables any non-professional adversary to generate
voice adversarial examples for impersonating a target user
without professional background or specialized equipment,
realizing a DeepFake [20] in the speaker recognition field. The
basic idea is to construct universal adversarial perturbations
at the phone level using a generative model, which can map
any voice to the adversary-desired target user. Exploiting the
generalization of the generative model by training on a large-
scale corpus with rich diversity, the attack could be transferred
from local substitute models to unseen target models. To
realize such an attack toolkit, we face several challenges. Voice
variation: our attack is designed to fit any adversary under
any speech text, so it should be robust to the voice variation
induced by person differences and text diversity. Generation
complexity: compared with AI professionals, non-professional
adversaries have no specialized equipment for adversarial



example generation, introducing a critical demand for a low-
complexity algorithm. Black-box setting: the adversary has no
prior knowledge of model details inside the target system,
indicating the black-box-oriented attack design.

In this paper, we first introduce the speaker recognition
system and illustrate the threat model of a targeted adversarial
example attack on such systems. To realize an out-of-the-
box attack, we further define three design goals except for
the two basic ones of adversarial example attacks. Based
on these goals, we propose PhoneyTalker, an out-of-the-
box toolkit for any non-professional adversary to perform
universal and transferable targeted adversarial example attacks
with low complexity. PhoneyTalker first decouples the whole
attack into the offline training and online attacking phases,
releasing the requirement for adversarial perturbation recon-
struction for different voices. To realize a universal attack,
PhoneyTalker decomposes voices into phone combinations
with a forced alignment method, then employs a generative
model to learn input-independent perturbations at the phone
level. Considering the signal distortion during perturbation
injection, PhoneyTalker adopts a set of digital signal pro-
cessing techniques to suppress the perturbation audibility. To
improve the generalization ability of adversarial examples,
PhoneyTalker trains the perturbations on a large-scale corpus
to facilitate the input diversity, and also pretrains several main-
stream speaker recognition models as the substitute classifiers
for the target model. Moreover, PhoneyTalker introduces a
loss function with a confidence margin to further enhance
the transferability. In this way, the adversary can exploit the
well-trained perturbations to generate adversarial examples
from any person with any speech text, for impersonating a
target user and spoofing unseen systems. Experimental results
show that PhoneyTalker could successfully attack mainstream
speaker recognition systems under white-box and black-box
settings on different persons and texts with a low time cost,
outperforming the state-of-the-art attack methods.

Our contributions are highlighted as follows:
• We propose an out-of-the-box toolkit, PhoneyTalker, en-

abling any adversary to perform universal targeted ad-
versarial example attacks on speaker recognition systems
without the requirement for professional background or
specialized equipment.

• We design a phone-level perturbation generation method
to construct universal adversarial perturbations, which
could be imposed on any voice from different adversaries
with various speech texts to impersonate a target speaker.

• We develop a generative model-based optimization ap-
proach to train the phone-level perturbations, which sig-
nificantly accelerates the generation of adversarial exam-
ples, thus realizing a time-efficient attack.

• We conduct extensive experiments on state-of-the-art
speaker recognition models with a large-scale corpus
to evaluate the performance, and the results show
PhoneyTalker achieves overall attack success rates of
99.9% and 84.0% under white-box and black-box settings
respectively.
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Fig. 1. Threat model of adversarial example attack.

The rest of this paper is organized as follows. We first
introduce the speaker recognition system and threat model in
Section II. Section III presents the design goals and toolkit
architecture of PhoneyTalker, whose design details are further
shown in Section IV. Section V shows the performance eval-
uation for PhoneyTalker. Finally, we review related works and
make a conclusion in Section VI and Section VII respectively.

II. ATTACK STATEMENT

In this section, we introduce the speaker recognition system
and the threat model, then formulate the problem of adversarial
example attacks against speaker recognition.

A. Speaker Recognition System

Speaker Recognition (SR) is also known as voiceprint au-
thentication, which extracts acoustic embeddings from voices
to learn individual characteristics of the speaker for user
identification or verification. Specifically, the recorded voice is
first preprocessed to reduce the interference of noise and multi-
path effects. To further characterize the voiceprint based on the
principles of human hearing, acoustic features (e.g., MFCCs,
filter banks) are extracted from the preprocessed voice. Then
the acoustic features are fed to a neural network model f(·) to
learn the voice embeddings (e.g., d-vector [21], x-vector [22]).
Finally, a scorer S(·) is used to measure the similarity between
the embedding of the input voice x and stored user profiles.
The user y with the highest score would be regarded as
the user identity. Since the identification system is accessible
to everyone, i.e., open-set, a threshold θ is preset to reject
unenrolled speakers. Such an SR system can be formulated as
follows:

h(x) =

 argmax
y∈E

S(f(x)), maxS(f(x)) > θ

unenrolled speaker, otherwise,
(1)

where h(x) models the whole SR system, and E denotes a
user group enrolled in the SR system.

B. Threat Model

Fig. 1 shows the threat model of an adversarial example
attack on SR. An adversary (Mallory) desires to spoof the SR
system for impersonating a target user (Alice), i.e., launch a
targeted adversarial example attack. We assume that Mallory
can directly access an attack toolkit from an open-source
platform, requiring no professional background or specialized
equipment, which realizes a similar out-of-the-box imperson-
ation attack on SR with DeepFake [20] in the computer vision



area. To acquire Alice’s voiceprint to construct adversarial
examples, we assume that Mallory can indirectly collect
limited voice samples (e.g., 10∼20s, which is sufficient for
SR systems to extract voiceprint [21], [22], [32]) from Alice
in various ways, such as retrieving voices from public social
media or making harassing phone calls. For instance, Alice
may share some personal videos or audio records on public
social platforms (e.g., Twitter, TikTok, YouTube), which can
be retrieved by anyone without significant effort. Note that
these limited voices from Alice have only a small amount of
text, which is insufficient to attack the SR system directly (i.e.,
replay attack). Instead, Mallory turns to generating adversar-
ial examples with the limited voice samples via the attack
toolkit, which could involve arbitrary speech text. During the
generation process of adversarial examples, we assume that
Mallory has no prior knowledge of model details inside the
SR system (e.g., network structure, model parameters, scorer
threshold). With the generated adversarial examples, Mallory
can impersonate Alice to bypass the SR system for malicious
purposes.

In this attack, Mallory constructs and imposes a perturbation
δ to any of her voice xm to generate an adversarial example,
with which Mallory could impersonate Alice ya to spoof
the SR system h(·), i.e., h(xm + δ) → ya. Therefore, the
perturbations could be generated by optimizing the problem:

argmin
δ

L(h(xm + δ), ya)

s.t. ‖δ‖p ≤ ε,
(2)

where L(·) is the loss function of the target SR system,
‖ · ‖p denotes Lp normalization, and ε is a constraint hyper-
parameter.

III. ATTACK OVERVIEW

In this section, we propose several design goals based on
the threat model and present the architecture of PhoneyTalker.

A. Design Goals

According to Eq. (2), there are two basic goals of a general
adversarial example attack:
• Effectiveness. As an impersonation attack, effectiveness

means a high success rate to ensure that the adversary can
successfully impersonate the target user and spoof the system,
which is the primary goal of an adversarial example attack.
• Imperceptibility. Imposing perturbations on benign

voices would lead to signal distortion, which may be perceived
by humans. Hence, the secondary goal is to ensure the
imperceptibility of generated adversarial examples.

Apart from these, in our threat model, the adversary is
assumed to have no professional background or specialized
equipment for adversarial example attacks. Hence, to enable
any non-professional adversary to realize such an attack, we
propose another three design goals:
• Universality. The attack toolkit in our threat model is

assumed to be designed for anyone, i.e., the perturbations
could be imposed on voices from any adversary, and have
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Fig. 2. Overall architecture of PhoneyTalker.

no limit on the speech text of adversarial examples. Thus, a
universal attack is required for person independence and text
independence.
• Low Complexity. Due to the lack of specialized equip-

ment for the adversary, a low-complexity attack is desired to
reduce the demand for computing resources, which further
indicates the necessity of saving training efforts and time cost
during adversarial example generation.
• Transferability. As mentioned in Section II-B, the ad-

versary has no prior knowledge of model details inside the
SR system, i.e., a black-box attack. Hence, the transferability
of adversarial examples on different SR systems is highly
demanded.

B. Toolkit Architecture

To realize an adversarial example attack meeting the afore-
mentioned goals, we propose PhoneyTalker, an out-of-the-box
toolkit that enables any non-professional adversary to generate
adversarial examples for impersonating any target user to
spoof SR systems.

The basic idea of PhoneyTalker is to construct perturbations
at the phone level. Since a phone is the fundamental phonetic
unit in a language, any voice can be decomposed into a
sequence of phones. To this end, PhoneyTalker decomposes
the input voice into a phone sequence and constructs fine-
grained phone-level adversarial perturbations. With arbitrary
combinations of phone-level perturbations, we could realize a
text-independent attack. In addition, PhoneyTalker employs a
generative model to train universal adversarial perturbations
on a large-scale corpus including hundreds of speakers, which
further improves the universality of perturbations on different
persons. Also, with the generative model, the offline training
and online attacking phases are decoupled, in which the well-
trained perturbations are reusable without reconstruction for
each voice, enabling a low-complexity attack. To further facili-
tate the transferability of perturbations, PhoneyTalker provides
multiple pretrained mainstream SR models as substitutes for
target SR systems.

Fig. 2 shows the overall architecture of PhoneyTalker, in-
cluding the offline training phase and online attacking phase.
In the offline training phase, the adversary generates phone-



level adversarial perturbations with collected voice samples by
five components as follows:
• Forced Aligner. To construct phone-level perturbations,

the forced aligner recognizes and localizes phones in the
voice using forced alignment techniques, with which the
voice is decomposed into a time-aligned phone sequence.

• Perturbation Generator. Fed with the time-aligned
phones, a multi-layer generative neural network model
is designed to generate the perturbation for each phone
automatically.

• Audibility Suppressor. To avoid the human perceptibility
of adversarial examples after imposing perturbations, the
audibility suppressor integrates several signal processing
techniques to constrain the perturbations.

• Substitute Classifier. For the success of transferring to
black-box models, several mainstream SR models are
pretrained as substitutes for target systems to enhance
the generalization ability of our attack.

• System Optimizer. To train the perturbation generator,
the system optimizer aims to minimize a designed loss
function with a confidence margin by iterative gradient
descent method.

In the online attacking phase, the adversary provides his/her
voice to construct adversarial examples. The adversary’s
voices are first input to the forced aligner to derive the time-
aligned phones, with which the perturbations generated in the
offline training phase are imposed on the adversary’s voices
to construct adversarial examples. The adversary could then
inject the adversarial examples into the target SR system to
impersonate the target user and bypass the identity authentica-
tion, during which no professional knowledge or specialized
equipment is required for the adversary.

IV. DESIGN DETAILS

In this section, we illustrate the design details of each
component in PhoneyTalker.

A. Forced Aligner

To construct perturbations at the phone level, PhoneyTalker
should first recognize and localize all phones in an input voice.
As mentioned in Section II-B, the adversary can exploit his/her
own voices to generate adversarial examples with any speech
text, i.e., the speech text of the adversarial example is specified
and known before perturbation generation. Meanwhile, the
phones of each word in the speech text can be determined
with a phone dictionary. Hence, the problem is intrinsically
to derive the time duration of each phone in the voice, which
could be addressed by Forced Alignment (FA).

FA is a technique for aligning an audio clip and its or-
thographic text transcription in the time domain, which deter-
mines the time duration of each phone in the audio clip. There
are several prevalent tools for accurate FA, such as Prosodylab-
aligner [23], Penn Phonetics Forced Aligner [24], FAVE-align
[25], Montreal Forced Aligner (MFA) [26]. However, most of
them rely on the HMM toolkit HTK [27], which is commer-
cially licensed and requires complex compilation on specific
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Fig. 3. Network structure of perturbation generator.

platforms, thus hindering the accessibility and usability of
non-professional adversaries. Fortunately, MFA is based on
the open-source Kaldi toolkit [28] and can be automatically
compiled with cross-platform compatibility. Hence, we adopt
MFA as the forced aligner to enable any adversary to use it.
Specifically, MFA looks up a preset phone dictionary to derive
all the phones in the speech text, then extracts MFCC features
from preprocessed voices, which are further fed to pretrained
acoustic models to align the derived phones. Finally, MFA
outputs the alignment information, i.e., the time duration of
each phone in the voice. Such a preset phone dictionary and
pretrained acoustic models in MFA could significantly save
the efforts of non-professional adversaries.

B. Perturbation Generator

With the time-aligned phones from the forced aligner,
PhoneyTalker constructs universal adversarial perturbations for
each phone with the perturbation generator.

To construct phone-level perturbations, we first need to
summarize the phones in English. Generally, voice can be
represented phonetically by a finite set of phones, which
are denoted by a set of ASCII labels called the ARPAbet.
Table I shows the list of ARPAbet phonetic labels used
in PhoneyTalker, conforming to the commonly used CMU
Sphinx dictionary [29]. According to the manner of articula-
tion, the phones are classified into stops, fricatives, affricates,
nasals, glides, liquids, and vowels, including 40 phonetic labels
in total. Considering the silent fragments in a voice being
detected and eliminated during the voice activity detection
of SR systems, it’s unnecessary to generate perturbations for
these voice fragments. Therefore, the label /SIL/ (i.e., silence)
is removed, leaving 39 phonetic labels in the list.

TABLE I
LIST OF ARPABET PHONETIC LABELS USED IN PhoneyTalker.

Class ARPAbet Phonetic Labels
Stops /P/, /B/, /T/, /D/, /K/, /G/

Fricatives /HH/, /F/, /V/, /TH/, /DH/, /S/, /Z/, /SH/, /ZH/
Affricates /CH/, /JH/

Nasals /M/, /N/, /NG/
Glides /Y/, /R/
Liquids /W/, /L/

Vowels
/IY/, /IH/, /EY/, /EH/, /AE/, /AA/, /AO/, /UH/, /OW/,
/UW/, /AH/, /ER/, /AY/, /AW/, /OY/

Silence /SIL/
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Fig. 4. Example of audibility suppression.

Based on the phonetic labels, we design a generative neural
network as the perturbation generator. Since PhoneyTalker is
designed to be a universal attack, the process of perturbation
generation is input-independent. Hence, we feed phone-level
random noise instead of specific voices to the generator as
input and derive the output as perturbations. Considering the
time duration of phones usually ranges in 50∼300ms (i.e.,
800∼3200 points at the common sampling rate of 16kHz
[30], [31]), a multi-layer DNN is adopted as the generator to
learn the perturbation distribution for such low-dimensional
samples. As shown in Fig. 3, the m × n input noise is
mapped to the perturbation space through three m×kn hidden
layers with ReLU activation, then we normalize m×n output
layer in the range of [-1, 1] with Tanh activation to derive
perturbations. The parameters m, n, k are the number of
phones, the length of perturbations, and the scale factor of
hidden layers, respectively.

Including phonetic labels as keys and perturbations as
values, a perturbation dictionary is derived, with which
PhoneyTalker could inject perturbations for any input voice.

C. Audibility Suppressor

The generated adversarial perturbations have significantly
different acoustic features with normal voices, especially filled
with high-frequency components and high amplitude peaks,
which could be perceived by the human auditory system.
Fig. 4(a) and 4(b) show the spectrums of a normal voice and
an adversarial example generated from it, respectively. Pertur-
bations with high frequency and amplitude can be observed
in Fig. 4(b), which severely obscures the acoustic structures
of the normal voice. To realize an imperceptible attack, the
audibility of perturbations needs to be suppressed. Amplitude
normalization and frequency masking are commonly used for
perturbation suppression, but the former results in performance
degradation while the latter is input-dependent. Therefore, we
combine a set of signal processing techniques to suppress the
perturbation audibility in terms of frequency, amplitude, and
boundary change, respectively.

Low-pass filtering. To eliminate the high-frequency compo-
nents of adversarial perturbations, a low-pass Digital Biquad
Filter (DBF) is applied first. In DBF, the cut-off frequency
is set as 2kHz and the energy loss factor defaults to 0.707.
Fig. 4(c) shows the voice spectrum after low-pass filtering.
Compared with Fig. 4(b), the frequency bands above 2kHz

exhibit significantly lower power, which indicates the high-
frequency components are suppressed.

Amplitude clipping. L∞ normalization is then adopted to
constrain the amplitude of adversarial perturbations. Specif-
ically, a clipping operation is performed with the amplitude
upper bound ε: δ = clip{δ,−ε, ε}. Fig. 4(d) shows the voice
spectrum further processed by amplitude clipping. Compared
with Fig. 4(c), the amplitude is squeezed in all frequency
bands, making the obscured acoustic structures of the normal
voice revealed especially in the low frequency bands.

Window smoothing. A Hann window is further applied
to smooth the boundary change due to perturbation injection
intervals. The window length depends on the time duration of
the specific phone. Fig. 4(e) shows the voice spectrum after
window smoothing. Compared with Fig. 4(d), the amplitude of
perturbations at the phone boundary presents a slighter change
over time. Finally, the spectrum in Fig. 4(e) results rather less
distortion, thus the perturbations get more imperceptible.

D. Substitute Classifier

The suppressed perturbations are further imposed on the
original voice in the training dataset to generate adversarial
examples that are then fed to substitute classifiers.

Due to the phone diversity of various texts and the artic-
ulation variations of different persons, the length of phones
is not fixed, and even the same phone has variable lengths
for different words in one voice. Fig. 5 shows a voice with
speech text for some time and its time-aligned phones (/SIL/,
/F/, /ER/, /S/, /AH/, /M/, /T/, /AY/, /M/). We can observe that
different phones have different lengths, and the lengths of the
same phone /M/ in the words some and time are also different
(i.e., 109ms and 170ms). To fully exploit the injectable space,
PhoneyTalker repeats and concatenates the same fixed-length
perturbation for each phone. Specifically, for a phone p at the
time duration of [s, e), b e−sn c perturbations are concatenated,
where n is the perturbation length. Then the concatenated
perturbation is imposed on the original voice with a random
time shift τ to tolerate inaccurate alignment.

After perturbation injection, the adversarial examples are
input to the substitute classifier. Under the black-box setting,
PhoneyTalker could not attack the unseen target model di-
rectly. Fortunately, adversarial examples are found to have
cross-model generalization ability, i.e., adversarial examples
generated from one model (i.e., substitute model) can mislead
another model (i.e., target model) with significant probability.
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Fig. 5. Example of different phone lengths in a voice with text for some time.

Therefore, to launch a black-box attack with high transfer-
ability, PhoneyTalker provides several pre-trained mainstream
SR models as substitutes for the target model, such as d-
vector [21], x-vector [22] and DeepSpeaker [32]. In addition,
PhoneyTalker adopts PLDA [33] as the scorer, which is
commonly used in SR systems. Note that PhoneyTalker is
designed to be modular, so non-professional adversaries can
select substitute models and the scorers according to their
target model, while skilled adversaries can freely customize
their own substitute classifier for better performance.

E. System Optimizer

After the former four components are prepared,
PhoneyTalker optimizes the whole system globally.

The global optimization procedure is summarized in
Algorithm 1. For the dataset with voice and text pairs, i.e.,
(X,T ) = {(x1, t1), . . . , (xn, tn)}, the optimization aims to
derive a perturbation generator G(·). Then PhoneyTalker gen-
erates a perturbation δ with G(·) and constructs adversarial
examples X ′ = X ⊕ δ for misleading the substitute classifier
C(·) to regard them as from the target user ya. First, the
generator G(·), random noise z, amplitude upper bound ε
and cut-off frequency f are initialized. In each epoch, a batch
of samples (X̂, T̂ ) is loaded, where X̂ denotes voice and T̂
refers to text. After the forced alignment, each phone p and
its time duration [s, e) are derived. Meanwhile, the noise z is
mapped to the corresponding perturbation through the genera-
tor: δ = G(z), then low-pass filtering, amplitude clipping, and
window smoothing are applied to the perturbation δ. With the
alignment information and random shift parameter (p, s, e, τ),
the perturbation δ is imposed to the voice X̂ to generate
adversarial examples X̂ ′, which are then input to the classifier
C(·) to derive the predicted label ypred and the score sa of the
target user ya. To ensure the success of transferring the attack
to the target system, we introduce a confidence κ to enhance
the impersonation constraint, i.e., the adversary impersonates
the target user if and only if the score sa is larger than the
threshold θ with a margin κ, i.e., sa ≥ θ+ κ. Hence, the loss
function is defined as follows:

L(ya, ypred) = max{θ − sa,−κ}. (3)

With the loss function, the perturbation generator is updated
by gradient descent, and such a process is repeated iteratively
until early stopping.

V. EVALUATION

In this section, we evaluate PhoneyTalker on mainstream
SR systems with large-scale datasets.

Algorithm 1 Global Optimization Procedure
Input: Dataset (X,T ) = {(x1, t1), (x2, t2), . . . , (xn, tn)},

target user ya, SR classifier C(·), random noise z, am-
plitude upper bound ε, cut-off frequency f .

Output: Well-trained generator G(·).
1: Initialize G(·), z, ε, f ;
2: repeat
3: for each batch (X̂, T̂ ) sampled from (X,T ) do
4: (p, s, e)← FA(X̂, T̂ );
5: δ ← G(z);
6: δ ← Hann(clip{DBF (δ, f),−ε, ε});
7: X̂ ′ ← clip{X̂ ⊕(p,s,e,τ) δ,-1,1};
8: ypred, sa ← C(X̂ ′);
9: L(ya, ypred)← max{θ − sa,−κ};

10: Minimize L(ya, ypred) to update G(·);
11: end for
12: until Early Stopping

A. Experimental Setup

Dataset. We implement PhoneyTalker on the basis of a
large-scale corpus LibriSpeech [30] (train-100, dev-clean, test-
clean), which contains over 110 hours of utterances from 331
speakers. In this dataset, the speakers span a wide range of
different accents, professions, and ages, and the texts involve
1,500 audio books, containing approximately 200,000 unique
words in total. Among them, we select 10 speakers (4 males,
6 females) as target users and another 40 speakers (20 males,
20 females) as adversaries. Then, we train the perturbation
generator of PhoneyTalker based on the data of the remaining
281 speakers. Benefit from the corpus diversity, PhoneyTalker
could generalize its attacks on different adversaries and speech
texts.

Implementation. PhoneyTalker is deployed on a server with
an Intel E5 V3 CPU, 128GB RAM and Titan Xp GPU with
12GB graphics memory, running Ubuntu 20.04 LTS. In the
generator, m is set as 39 that is consistent with the number
of used phonetic labels in Table I, n is set as 200 to ensure
at least 4 perturbations are injected for short phones with 800
sampling points, and k is set as 4 through empirical studies.
Besides, we set confidence κ = 50, amplitude upper bound
ε = 0.02 and cut-off frequency f = 2kHz unless otherwise
specified. During generator training, the batch size is set as
128 and the learning rate decreases from 1e-3 to 1e-5. Adam
is adopted as the optimizer with a patient value of 5 for early
stopping.

Target SR systems. To validate the effectiveness of
PhoneyTalker, we select several mainstream DNN-based SR
models including d-vector [21], x-vector [22] and DeepS-
peaker [32] with a PLDA scorer [33]. To train these models,
we employ another large-scale corpus VoxCeleb1 [31], which
contains 1,251 speakers and 153,516 utterances. During the
model training, we divide VoxCeleb1 into two disjoint sets,
i.e., VoxCeleb1-P1 (626 speakers with 76,593 utterances) and
VoxCeleb1-P2 (625 speakers with 76,923 utterances), and train



the three models on both sets respectively to construct six
variant SR systems (A-F), whose performance is shown in
Table II.

Experiment design. We first perform white-box attacks
on the six SR systems, then conduct transfer attacks across
different SR systems under the black-box setting. In each
attack, we generate 2,229 adversarial examples from the 40
adversaries and impose them on each of the 10 target users
repeatedly. In total, we generate 60 universal perturbation
dictionaries and launch 802,400 attack trials.

Evaluation metrics. (1) Attack Success Rate (ASR):
ASR = M

N , where N is the total amount of trials and M is the
number of successful attacks, for evaluation of effectiveness.
(2) Confusion Matrix: each row and each column of the
matrix represent the substitute classifier and target system
respectively. The ith-row and jth-column entry of the matrix
shows ASR of the transfer attack from the ith substitute
classifier to the jth target system. (3) Signal-to-Noise Rate
(SNR): SNR = 10 log10 (

Px
Pδ

), where Px and Pδ are the signal
power of the original voice and the corresponding perturbation,
respectively. A higher SNR indicates less distortion and better
imperceptibility. (4) Average Time Cost (ATC): the average
time of adversarial example generation.

B. Overall Performance

We first evaluate the overall performance of PhoneyTalker
in terms of effectiveness and imperceptibility under the white-
box setting. Table III shows ASRs of PhoneyTalker and two
State-Of-The-Art (SOTA) works RURA [16] and AdvPulse
[17]. We can observe that PhoneyTalker achieves over 15%
ASR improvement compared with RURA while realizing a
higher SNR. Also, PhoneyTalker still outperforms AdvPulse
with a 3% ASR improvement while doubling the SNR to
achieve better imperceptibility. Since the two SOTA works
are designed to attack x-vector SR systems, the performance
on d-vector and DeepSpeaker is unavailable. Instead, we
conduct extensive experiments to validate the effectiveness
of PhoneyTalker on attacking other SR systems. It can be
observed that PhoneyTalker could deceive d-vector and Deep-
Speaker with ASRs of 100.00% and 99.93% respectively,
demonstrating its capability on attacking different models.

TABLE II
EERS OF SR SYSTEMS UNDER DIFFERENT DATASETS AND MODELS.

EER(%) d-vector x-vector DeepSpeaker

VoxCeleb1-P1 System A
(8.49)

System B
(5.98)

System C
(6.95)

VoxCeleb1-P2 System D
(7.03)

System E
(5.02)

System F
(5.33)

TABLE III
ASRS OF PhoenyTalker AND SOTA WORKS UNDER WHITE-BOX SETTING.

Attack Method
ASR(%)

SNR(dB)
d-vector x-vector DeepSpeaker

RURA N/A 83.82 N/A 16.98
AdvPulse N/A 96.90 N/A 8.30

PhoneyTalker 100.00 99.97 99.93 17.76
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Fig. 6. Performance of PhoneyTalker across different datasets and models.

C. Evaluation on Transferability

In a practical attack scenario, the adversary usually has
no prior knowledge of the target system’s model details, i.e.,
requiring a black-box attack. Hence, we further evaluate the
transferability of PhoneyTalker under the black-box setting. In
each experiment, we select one of the trained SR systems from
the six ones (as shown in Table II) as the substitute classifier.
After generating the perturbations on the substitute classifier,
we further evaluate its performance on attacking other five
systems as the target, which differ in the training dataset,
parameters, model architectures, etc., from the substitute one,
thus issuing a black-box attack. By analogy, we repeat the
experiments by selecting each model as the substitute classifier
and attacking the rest ones.

Fig. 6(a) shows the confusion matrix of PhoneyTalker on
the six SR systems. We can observe that PhoneyTalker could
achieve high ASRs when transferring to different systems
whose internal details are agnostic. Only 7 out of the 30 black-
box attacks achieve ASRs below 80%. This result demon-
strates PhoneyTalker could achieve satisfactory transferability,
thus realizing black-box attacks with high ASRs. Moreover,
we can find that the transferability of adversarial example
attacks is highly related to the training dataset and model
structure of the target system. Specifically, the system C and F
(i.e., DeepSpeaker trained on VoxCeleb1-P1 and VoxCeleb1-
P2 respectively), as well as the system D and F (d-vector and
DeepSpeaker trained on VoxCeleb1-P2 respectively) present
significantly different resistance ability against adversarial
examples generated from other systems.

To investigate the impact of dataset and model on the
attack’s transferability, we further summarize the evaluation
results under a white-box and three black-box settings, i.e.,
white-box, cross dataset, cross model and cross dataset &
model. Fig. 6(b) shows the ASRs of PhoneyTalker under
different settings. We can see that PhoneyTalker achieves
average ASRs of 89.0%, 86.4%, 79.2% under the three black-
box settings respectively. Compared with the white-box set-
ting, there are only 11%, 13%, 20% performance degradation
under the cross dataset, cross model and cross dataset &
model settings respectively. This result indicates that different
training datasets induce more interference than the model
on the transferability of PhoneyTalker, but the attack could
still achieve acceptable ASRs under the black-box settings,
validating its good transferability.



D. Evaluation on Computational Complexity

Unlike previous iterative optimization-based attack meth-
ods, PhoneyTalker could impose pre-trained phone-level per-
turbations on an arbitrary voice for target user impersonation,
thus significantly reducing the generation time cost of ad-
versarial examples. To validate it, we compare the ATCs of
PhoneyTalker and other SOTA works. Table IV shows ATCs
of PhoneyTalker and other SOTA works RURA and FakeBob
[15]. We can find that compared to RURA, PhoneyTalker’s
ATC is doubled. But considering the 15% ASR improvement,
the difference in ATC is only 0.015s, which is almost negli-
gible in practical attacks. On the other hand, though FakeBob
could achieve a 100.0% ASR under the black-box setting, it
requires numerous queries for gradient estimation, leading to a
significantly large ATC of 995s. Instead, PhoneyTalker’s ASR
degrades to 84.7%, but the ATC dramatically decreases to
0.03s, which is a 30,000× speedup in the adversarial example
generation. This result demonstrates that PhoneyTalker can ef-
fectively reduce the computational complexity for adversaries
to launch an adversarial example attack, which especially
satisfies the demands of non-professional adversaries without
specialized equipment.

E. Evaluation on Universality

To validate the universality of PhoneyTalker, we conduct
experiments on 40 different persons as adversaries under vari-
ous speech texts. Fig. 7(a) shows ASRs of PhoneyTalker under
different adversaries. We can see that PhoneyTalker achieves
high ASR on different persons with a standard deviation of
0.29%, 8.87%, 8.94%, 15.80% under the four attack settings
respectively. And their interquartile ranges are 0.00%, 10.71%,
10.93%, 26.05% correspondingly. Since such statistics involve
40 different adversaries and cover 1,500 audio books contain-
ing approximately 200,000 unique words, this result indicates
that PhoneyTalker shows minute variations when different
adversaries use various speech texts as commands for the
attack, i.e., robust to person differences and text diversity.

We also evaluate the performance of PhoneyTalker under
different genders of adversaries and target users. In the exper-
iment, we utilize the voice samples from 40 adversaries (20
males, 20 females) and 10 target users (4 males, 6 females) for
the evaluation. Fig. 7(b) shows ASRs of PhoneyTalker under
intra-gender and inter-gender attacks with different attack set-
tings. Overall, PhoenyTalker achieves satisfactory performance
on intra-gender and inter-gender attacks. For intra-gender at-
tacks, the ASRs under white-box and three black-box settings
are all above 90%. On the other hand, for inter-gender attacks,
the ASR under white-box setting still approaches 100%, and

TABLE IV
ATCS OF PhoenyTalker AND SOTA WORKS.

Setting Attack Method ASR(%) ATC(s)

White-box
RURA 83.82 0.015

PhoneyTalker 99.97 0.030

Black-box
FakeBob 100.00 995.000

PhoneyTalker 84.87 0.030
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Fig. 7. ASRs of PhoneyTalker on different adversaries and across genders.

those under cross-dataset and cross-model settings are also
over 80%, indicating the robustness to genders. But for cross
dataset & model setting, the ASR rapidly decreases to 66.7%.
This is because the pitch and harmonic structures of different
genders exhibit more significant variations, introducing higher
difficulty in generating such inter-gender adversarial examples,
especially when the attack crosses the dataset and model
simultaneously.

F. Ablation Study

In this section, we investigate the impact of key hyperparam-
eters including perturbation length, amplitude upper bound and
confidence on the performance of PhoneyTalker. For simplic-
ity, we select system F which has the most complex network
structure and strong transferability as the substitute classifier
and system A-F as the target system for the evaluation.

Perturbation length. Fig. 8 shows ASRs of PhoneyTalker
with different perturbation lengths under the four attack set-
tings. It can be observed that as the perturbation length
increases, ASR under the white-box setting stays above 99%,
while that under three black-box settings first increases and
then gradually decreases. This is because short perturbations
have limited freedom degrees, making it difficult to generalize
to all voices. But as the length increases, the injectable number
of perturbations in each phone reduces, thus leading to a
fluctuation of its performance.

Amplitude upper bound. Fig. 9 shows ASRs of
PhoneyTalker with different amplitude upper bounds under the
four settings. With the growth of the amplitude upper bound,
ASR under the white-box setting remains steady, while that
under three black-box settings exhibits a rapid increase and
then goes stable. This result indicates a better performance
under a larger amplitude upper bound. However, with the
increase of the upper bound, the perceptibility of generated
perturbations also becomes more significant due to larger
distortions. Considering the limited performance improvement
after the turning point (i.e., ε = 0.02) and the different energy
loss of the acoustic signal attenuation [34], the adversary could
select an appropriate ε to balance the attack performance and
imperceptibility.

Confidence. Fig. 10 shows ASRs of PhoneyTalker with
different confidence under the four settings. With the increase
of confidence, ASR under the white-box setting is stable
at a high value, while that under three black-box settings
increases quickly and then goes steady. Compared to the
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Fig. 10. ASR of PhoneyTalker with different
confidence κ (n=200, ε=0.02).

results without confidence (i.e., κ = 0), there is a dramatic
improvement after introducing confidence in the loss function,
demonstrating the effectiveness of our generator design to
improve the performance.

VI. RELATED WORK

In this section, we review existing studies of adversarial
example attacks in the speech and speaker recognition area.

Adversarial example attack on automatic speech recog-
nition. Recent academic efforts start to explore the adversarial
example attack on speech recognition. Early work [35] first
investigates the feasibility of transferring the adversarial exam-
ple design technique in computer vision to the audio spectrum.
Following work [36] turns to generating voice adversarial
examples directly leveraging an iterative optimization method.
To explore the attack in the physical domain, other studies
[37], [38] exploit room impulse response to simulate the
distortion over-the-air. However, all the aforementioned studies
focus on attacking a white-box speech recognition system,
which is unpractical in the real world. Hence, recent studies
propose black-box attacks based on genetic algorithms [39],
[40]. More recent research [41] proposes a selective gradient
estimation approach to reduce the number of queries. These
prior efforts advance the research of black-box attacks, but
still require access to the internal output of the target system.

Adversarial example attack on speaker recognition.
Except for speech recognition, many researchers turn to ex-
ploring the adversarial example attack on speaker recognition.
Early studies [5], [8], [9] demonstrate the vulnerability of
DNN-based speaker recognition systems leveraging classical
adversarial example attack methods (e.g., FGSM [10], PGD
[11], C&W [12]). Such attacks search for coarse-grained per-
turbations based on approximate gradients under the white-box
setting, resulting in limited performance and insufficient threat
to unseen models. Following works [13], [14] exploit the gen-
eralization of adversarial examples to transfer the attack from a
substitute model to the target model. But such methods exhibit
poor transferability among models under different architec-
tures. Instead of relying on transferability, FakeBob [15] turns
to propose a full query-based black-box attack using natural
evolution strategy. However, the requirement for numerous
queries on the target system is unpractical in real scenarios. All
these works employ amplitude normalization to constrain the
perturbations, while other works [14], [42] employ the acoustic

masking effect to generate more imperceptible perturbations.
However, acoustic masking requires finding masker tones for
specific voices, which is input-dependent. Recent studies [16]–
[19] investigate to generate universal adversarial perturbations
to realize person-independent and text-independent attacks,
releasing the efforts of perturbation reconstruction for different
voices. However, these studies are evaluated on small-scale
datasets from a few speakers under a completely white-box
setting, thus making them unpractical in the real world. All
these studies are designed for the security or AI professions,
thus limiting their impact in practice.

Different from these existing studies, our work aims to
design an out-of-the-box toolkit, which enables any non-
professional adversary to launch a universal, low-complexity,
and transferable targeted adversarial example attack for im-
personating a target user.

VII. CONCLUSION

In this paper, we propose PhoneyTalker, an out-of-the-box
toolkit for any non-professional adversary to launch universal
and transferable targeted adversarial example attacks with
low complexity. Different from existing iterative optimization-
based attacks that are input-specific, non-transferable and time-
consuming, we design a generative model to construct phone-
level perturbations, which are reusable for voices from differ-
ent persons and texts. Besides, we introduce a loss function
with confidence and train the perturbations on diversified
datasets to enhance the transferability of adversarial examples.
Experiments on SOTA speaker recognition with large-scale
corpus demonstrate PhoneyTalker could successfully attack the
systems without the requirement of professional knowledge or
specialized equipment.

ACKNOWLEDGMENT

This research is sponsored by National Key R&D Program
of China (No. 2020AAA0107700), National Natural Science
Foundation of China (No. 62032021, 62102354, 61772236,
62172359), Leading Innovative and Entrepreneur Team In-
troduction Program of Zhejiang (No. 2018R01005), Funda-
mental Research Funds for the Central Universities (No.
2021FZZX001-27). This work is also supported by Alibaba-
Zhejiang University Joint Institute of Frontier Technologies,
Research Institute of Cyberspace Governance in Zhejiang
University.



REFERENCES

[1] M. Abuhamad, A. Abusnaina, D. Nyang, and D. A. Mohaisen, “Sensor-
based continuous authentication of smartphones’ users using behavioral
biometrics: A contemporary survey,” IEEE Internet Things J., vol. 8,
no. 1, pp. 65–84, 2021.

[2] H. Feng, K. Fawaz, and K. G. Shin, “Continuous authentication for voice
assistants,” in Proceedings of ACM MobiCom. New York, NY, USA:
ACM, 2017, pp. 343–355.

[3] H. Kong, L. Lu, J. Yu, Y. Chen, and F. Tang, “Continuous authentication
through finger gesture interaction for smart homes using wifi,” IEEE
Trans. Mob. Comput., vol. 20, no. 11, pp. 3148–3162, 2021.

[4] Markets and Markets, “Voice biometrics market by component, type
(active and passive), application (authentication and customer ver-
ification, transaction processing), authentication process, organiza-
tion size, deployment mode, vertical, and region - global forecast
to 2026,” https://www.marketsandmarkets.com/Market-Reports/voice-
biometrics-market-104503105.html, 2021.

[5] Y. Gong and C. Poellabauer, “Crafting adversarial examples for speech
paralinguistics applications,” in Proceedings of DYNAMICS Workshop,
San Juan, Puerto Rico, 2018, pp. 1–9.

[6] S. Liu, H. Wu, H. Lee, and H. Meng, “Adversarial attacks on spoofing
countermeasures of automatic speaker verification,” in IEEE ASRU.
Singapore: IEEE, 2019, pp. 312–319.

[7] A. Jati, C.-C. Hsu, M. Pal, R. Peri, W. AbdAlmageed, and S. Narayanan,
“Adversarial attack and defense strategies for deep speaker recognition
systems,” Computer Speech & Language, vol. 68, p. 101199, 2021.
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