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Background

& Speaker Recognition System & Audio Adversarial Example
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& Speaker Recognition System & Audio Adversarial Example
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Threat Model

# Replay VOICE AUDIO with adversarial perturbation
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Attack Overview

Universal Adversarial Perturbation on Phonemes ( g Online Attack Phase g
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Offline Training Phase

¢ Subphoneme-level Perturbation: use fixed short perturbation (<25ms) to form phoneme-level perturbation

with various duration(>50ms), repetitively

¢ Channel Augmentation: explore real channel state information for data augmentation with MLS[6]

Transferable Calibration: employ the ensemble learning method to improve transferability
¢ Expectation Optimization : train on a large training set instead of the specific audio

Algorithm 1 Global Optimization Procedure.

Dataset y = {(xo, t0), (x1,t1), -, (Xp-1,tn-1)}, SR clas-

sifiers S; with threshold 6; (i =0,1,--- ,k — 1), UIR set

1 1

1 /a/ /b/ Ju/ 1 . .. .

: M ANA : Various ReceIVIng Devices C target user y;, amplitude upper bound €.

1 /d/ /th/ 1 update update Output:

L ittt I out, | L 1: Initialize P with normal distribution
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12:
13: until Early Stopping
14: return P;

for each (X, T) sampled from y do
L0
for each ¢ in C do
Xado < G(X’P* C)
s« 67 wi - Ls, 0, (Xado 1)
L « max{0, max;zy, si} — sy,
Ly« L+L
end for
Minimize L, to update P
end for

“visit” . .
Various environments

[6] Douglas D. Rife and John Vanderkooy. Transfer-function measurement with maximum-length sequences. Journal of the Audio Engineering Society 37, 6 (June). 1989.
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Online Attack Phase

¢ Real-time phoneme extraction: extract current phoneme sequence from the live speech with a fast neural
phoneme recognition system

¢ Phoneme Alignment : locate the current phoneme in the RPS with long-short term

Preset speech text
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Original MFCC Neural Network Frame-level Phoneme :
‘Audio Frames 3-layer BILSTM [7] Phonemes Sequence Recorded Phoneme Sequence Estimated Phoneme 'Sequence

Realtime Phoneme recognition system

<

[7 JAlex Graves and Jurgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18, 5-6. 2005.

Qianniu Chen @ PhvTalker



Online Attack Phase

¢ Real-time phoneme extraction: extract current phoneme sequence from the live speech with a fast neural
phoneme recognition system
¢ Phoneme Alignment : locate the current phoneme in the RPS with long-short term

¢ Phoneme Estimation : Estimate speech voice and patch phoneme durations by referring RPS

. dref
g::leuree::: (I;hposn)eme Estimate O Estimate d" _ 1+J Je{0,-- M)
o speech speed v, phoneme duration’
with EWMA
Recorded Phoneme Sequence Estimated Phoneme Sequence Broadcast
corresponding Loud "
perturbation -OUdSPEAKEr
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Evaluation

Target Systems Setting

& Architectures: x-vector[8] / d-vector[9] / DeepSpeaker[10]

¢ Training Set: Voxceleb [11] corpus
¢ Test Set: LibriSpeech[12] corpus s
& Enrollers: 5 speakers(3 males and 2 females) = (@)
& Backend: Lenovo Xiaoxin Pro 13 — 360° Microphone
_____ 1 (Receiver Front-end)
T T T SRR i
. : : |(Processing Back-end) :
Attack Setting LTH
Adversaries: 10 speakers(5 males and 5 females) - I\

Attack Device: ReSpeakerCore v2

Subphoneme-level perturbation duration: 12.5ms
Livestreaming synchronization: 0.5s/alignment

Channel augmentation: 8 CIRs per (receiver, environment)
Ensemble learning: 4 ensemble models

Attack Device SR system

[8] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez- Dominguez. Deep neural networks for small footprint text-dependent speaker verification. in Proceedings of IEEE ICASSP. 2014.
[9] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur. Xvectors: Robust dnn embeddings for speaker recognition. in Proceedings of IEEE ICASSP. 2018.

[10] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, and Z. Zhu. Deep speaker: an end-to-end neural speaker embedding system. CoRR, vol. abs/1705.02304. 2017.

[11] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A Large-Scale Speaker Identification Dataset. In Processings of ISCA Interspeech. 2017.

[12] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR corpus based on public domain audio books. In Processings of IEEE ICASSP. 2015.
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Evaluation

Table 3: Overall ASRs, SNR, MCD and RTF of PhyTalker and
SOTA works under physical attack scenarios.

@ Overall performance

ASR(%) SNRMCD
Attack I vec. DS. | (dB) (dB) "OF
‘ PhyTalker 85.5 80.5 90.5 16.8 2.45 0.5

FakeBob[5] | 633 774 698 | 11.6 415 95.3
AdvPulse[4] | N/A 89.9 N/A| 47 N/A <1.0

ASR: Attack Success Rate for effectiveness (the higher the better)
MCD: Mel Cepstral Distortion for audibility (the lower the better)
SNR: Signal-to-Noise Ratio for audibility (the higher the better)

RTF: Real Time Factor for efficiency (the lower the better)

[4]1Z. Li, Y. Wu, J. Liu, et al. Advpulse: Universal, synchronization-free, and targeted audio adversarial attacks via subsecond perturbations. in Proceedings of ACM CCS. 2020.
[5] G. Chen, S. Chen, L. Fan, et al. Who is real bob? adversarial attacks on speaker recognition systems. in Proceedings of IEEE S&P. 2021.

Qianniu Chen @ PhvTalker



¢ Overall performance

¢ Human Imperceptibility
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Evaluation: in-the-wild evaluation

Evaluation Setup

¢ 10 volunteers as adversaries (4 females and 6 males)
¢ 20-minute voice record/volunteer for training
¢ 10 utterances per/volunteer for evaluation

Lavalier
SR back-end Microphone

Loudspeaker

20 + C—1 original RPS
B pre-record RPS

O .
PO P1 P2 P3 P4 P5P6P7P8PY
Adversary ID
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Conclusion

@ Explore three major challenges underlying a practical physical attack scenario
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Conclusion

@ Explore three major challenges underlying a practical physical attack scenario
@ Propose a subphoneme-level, channel-robust and transferable adversarial

example attack to solve the challenges
¢
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Conclusion

& Explore three major challenges underlying a practical physical attack scenario

@ Propose a subphoneme-level, channel-robust and transferable adversarial
example attack to solve the challenges

@ Enables an adversary to conduct a live-streaming attack manner in physical domain
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